Open circuit,
for the power take-off of commercial vehicles

Nominal pressure $p_{\text{nom \ max}}$: 400 bar
Peak pressure p_{max}: 450 bar
Geometric displacement V_{max}: 130 cm3/rev
Contents

1. Overview: variable displacement axial piston pump type V60N ... 4

2. Available versions, main data .. 5
 2.1 Basic version .. 5
 2.2 Controller ... 11
 2.2.1 LSNR, LSNRT controllers ... 12
 2.2.2 QNR controller ... 14
 2.2.3 ZV, ZV1 and V controller .. 17
 2.2.4 NR, NR2, NR3 controller .. 20
 2.2.5 PR, P1R controllers ... 22
 2.2.6 ZL and L controllers ... 24
 2.2.7 ZW intermediate plate ... 26

3. Parameters .. 27
 3.1 General .. 27
 3.2 Characteristics ... 30
 3.3 Electrical parameters ... 32

4. Dimensions ... 33
 4.1 Basic pump .. 33
 4.1.1 Type V60N-060 .. 33
 4.1.2 Type V60N-090 .. 38
 4.1.3 Type V60N-110 ... 44
 4.1.4 Type V60N-130 ... 50
 4.2 Controllers and intermediate plates 55

5. Assembly, operation and maintenance recommendations .. 58
 5.1 Intended use ... 58
 5.2 Assembly information ... 58
 5.2.1 General information .. 59
 5.2.2 Connections ... 60
 5.2.3 Installation positions ... 61
 5.2.4 Tank installation ... 62
 5.3 Operating instructions .. 63

6. Other information .. 65
 6.1 Accessories, spare parts and separate components 65
 6.1.1 Suction intake ... 65
 6.1.2 Coupling flange for cardan shafts 66
 6.2 Planning information ... 67

© HAWE Hydraulik SE
D 7960 N - V60N - 02-2019-2.5

3/68
Overview: variable displacement axial piston pump type V60N

Variable displacement axial piston pumps adjust the geometric output volume from maximum to zero. As a result they vary the flow rate that is provided to the consumers.

The axial piston pump type V60N is designed for open circuits in mobile hydraulics and operate according to the swash plate principle. They are available with the option of a thru-shaft for operating additional hydraulic pumps in series.

The pump is fitted mainly to the power take-off on commercial vehicle transmissions. The large selection of different pump controllers allows the type V60N axial piston pump to be used in a variety of applications.

Features and benefits:
- Optimized power-to-weight ratio
- Broad selection of controllers
- Slim design
- Thru-shaft compatibility
- High self-suction speed

Intended applications:
- Municipal trucks
- Fire trucks
- Loading cranes and elevating work platforms
- Tipper trucks and skip trucks
- Suction dredgers and sewer cleaning vehicles
Available versions, main data

2.1 Basic version

Circuit symbol:

![Circuit symbol]

Order coding example:

<table>
<thead>
<tr>
<th>V60N</th>
<th>-090</th>
<th>R</th>
<th>D</th>
<th>Y</th>
<th>N</th>
<th>-2</th>
<th>-0</th>
<th>03</th>
<th>/LSNR/ZL</th>
<th>-2/65</th>
<th>-350</th>
<th>-A00/76</th>
<th>-C022</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

- **Thru-shaft version**: Table 12 Thru-shaft versions
- **Suction intake**: For suction intake see Chapter 6.1, "Accessories, spare parts and separate components"
- **Connections**: Table 11 Connections
- **Pressure specification (bar)**: Table 10 Stroke limitations
- **Controller**: Table 8 Controllers
- **Release**: Table 9 Solenoid voltage and versions
- **Additional function**: Table 7 Additional function
- **Housing version**: Table 6 Housing versions
- **Seal**: Table 5 Seals
- **Flange version**: Table 4 Flange versions (input side)
- **Shaft version**: Table 3 Shaft versions
- **Rotation direction**: Table 2 Rotation directions
- **Nominal size**: Table 1 Nominal sizes
- **Basic type**
Table 1 Nominal size

<table>
<thead>
<tr>
<th>Coding</th>
<th>Geometric displacement (cm³/rev)</th>
<th>Nominal pressure p_{nom} (bar)</th>
<th>Peak pressure p_{max} (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>060</td>
<td>60</td>
<td>350</td>
<td>400</td>
</tr>
<tr>
<td>090</td>
<td>90</td>
<td>350</td>
<td>400</td>
</tr>
<tr>
<td>110</td>
<td>110</td>
<td>350</td>
<td>400</td>
</tr>
<tr>
<td>130</td>
<td>130</td>
<td>400</td>
<td>450</td>
</tr>
</tbody>
</table>

Table 2 Rotation directions

<table>
<thead>
<tr>
<th>Coding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Anti-clockwise</td>
</tr>
<tr>
<td>R</td>
<td>Clockwise</td>
</tr>
</tbody>
</table>

When looking at the shaft journal

(for information on change of rotating direction, see Chapter 3, "Parameters")

Table 3 Shaft versions

<table>
<thead>
<tr>
<th>Coding</th>
<th>Description</th>
<th>Designation/standard</th>
<th>Max. drive torque (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Parallel key splined shaft</td>
<td>Similar to DIN ISO 14 (LKW) B8x32x35</td>
<td>800</td>
</tr>
<tr>
<td>M</td>
<td>Spline shaft</td>
<td>W30x2x14x9g DIN 5480 (only V60N-090, V60N-110)</td>
<td>530</td>
</tr>
<tr>
<td>H</td>
<td>Spline shaft</td>
<td>SAE-B J 744 13T 16/32 DP 22-4 DIN ISO 3019-1 (only V60N-060)</td>
<td>210</td>
</tr>
<tr>
<td>U</td>
<td>Spline shaft</td>
<td>SAE-B J 744 short 13T 16/32 DP 22-4 DIN ISO 3019-1 short (only V60N-060)</td>
<td>210</td>
</tr>
<tr>
<td>T</td>
<td>Spline shaft</td>
<td>SAE-BB J 744 15T 16/32 DP 25-4 DIN ISO 3019-1 (only V60N-060)</td>
<td>340</td>
</tr>
<tr>
<td>S</td>
<td>Spline shaft</td>
<td>SAE-C J 744 14T 12/24 DP 32-4 DIN ISO 3019-1</td>
<td>640</td>
</tr>
<tr>
<td>Q</td>
<td>Spline shaft</td>
<td>SAE-CS 21T 16/32 DP 35-4 DIN ISO 3019-1 (only V60N-090, V60N-110, V60N-130)</td>
<td>900</td>
</tr>
</tbody>
</table>
Table 4 Flange versions (input side)

<table>
<thead>
<tr>
<th>Coding</th>
<th>Description</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Flange</td>
<td>DIN ISO 7653 (for trucks)</td>
</tr>
<tr>
<td>P</td>
<td>Flange</td>
<td>DIN ISO 7653 -10° rotated (for lorries) (only V60N-110, V60N-130) *</td>
</tr>
<tr>
<td>X</td>
<td>Flange</td>
<td>SAE-B 2-hole J 744 - 45° rotated 101-2 DIN ISO 3019-1 (only V60N-060)</td>
</tr>
<tr>
<td>Z</td>
<td>Flange</td>
<td>SAE-B 4-hole J 744 101-4 DIN ISO 3019-1 (only V60N-060)</td>
</tr>
<tr>
<td>F</td>
<td>Flange</td>
<td>SAE-C 4-hole J 744 127-4 DIN ISO 3019-1</td>
</tr>
<tr>
<td>G</td>
<td>Flange</td>
<td>125 B4 HW DIN ISO 3019-2 (only V60N-090, V60N-110)</td>
</tr>
</tbody>
</table>

* In particularly tight installation situations, a flange that is turned by 10° can be used to prevent a collision with the cardan shaft.

Table 5 Seals

<table>
<thead>
<tr>
<th>Coding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>NBR (gearbox-side shaft seal made of FKM, pump-side shaft seal and other NBR seals)</td>
</tr>
<tr>
<td>V</td>
<td>FKM</td>
</tr>
</tbody>
</table>

NOTE

When switching on the pump, the transmission side oil must be warmer than -25 °C.

Table 6 Housing versions

<table>
<thead>
<tr>
<th>Coding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Suction and pressure connection axial</td>
</tr>
<tr>
<td>2</td>
<td>Suction and pressure connection radial, with thru-shaft</td>
</tr>
<tr>
<td>3</td>
<td>Suction and pressure connection radial</td>
</tr>
<tr>
<td>4</td>
<td>Suction and pressure connection axial, connections SAE J 518 (only V60N-090)</td>
</tr>
</tbody>
</table>

Table 7 Additional functions

<table>
<thead>
<tr>
<th>Coding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>None</td>
</tr>
</tbody>
</table>

Table 8 Controllers

<table>
<thead>
<tr>
<th>Coding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivery flow controller</td>
<td></td>
</tr>
</tbody>
</table>
| LSNR | Load-sensing controller with integrated pressure limitation *(Standard version for combination with hydraulic valves that relieve the LS signal in the valve, for example, type PSV proportional directional spool valve [See "Further information"])*
See Chapter 2.2.1 |
| LSNRT | Load-sensing controller with integrated pressure limitation and additional LS relief *(only for use with hydraulic valves without their own relief of the LS signal)*
See Chapter 2.2.1 |
| QNR/... | Flow controller with integrated pressure limitation for setting a constant flow rate independently of the speed.
See Chapter 2.2.2 |
| ZV |
Size 060, 090, 110: Electric proportional delivery flow controller with increasing characteristic curve (intermediate plate)
Only in combination with a pressure controller (coding NR2)
See Chapter 2.2.3 |
| ZV1 |
Size 060, 090, 110: Electric proportional delivery flow controller with decreasing characteristic curve (intermediate plate).
Only in combination with a pressure controller (coding NR2).
See Chapter 2.2.3 |
| V |
Size 130: Electric proportional delivery flow controller with increasing characteristic curve.
Only in combination with a pressure controller (coding NR3)
See Chapter 2.2.3 |
| **Pressure controller** | |
| NR | Mechanically adjustable pressure controller (standard version).
See Chapter 2.2.4 |
| NR2 | Mechanically adjustable pressure controller. Only in combination with type ZV, ZV1 flow controllers.
See Chapter 2.2.4 |
| NR3 | Mechanically adjustable pressure controller. Only in combination with type V flow controllers.
See Chapter 2.2.4 |
| PR | Electric proportional pressure controller with increasing characteristic curve.
Cannot be combined with other pump controllers!
See Chapter 2.2.5 |
| P1R |
Size 060, 090, 110: Electro-proportional pressure controller with falling characteristic curve.
Cannot be combined with other pump controllers!
See Chapter 2.2.4 |
| **Power controller** | |
| ZL |
Size 060, 090, 110: Power controller (intermediate plate)
Only in combination with a flow controller or pressure controller
See Chapter 2.2.6 |
| L |
Size 130: Power controller (as standard)
Only in combination with a flow controller or pressure controller
See Chapter 2.2.6 |
| **Intermediate plate** | |
| ZW |
Size 060, 090, 110: 45° angle intermediate plate
Standard for housing versions -2 and -3, to avoid a collision between the pump controller and the suction or pressure line
Only in combination with a flow controller or pressure controller
See Chapter 2.2.7 |
Table 9 Solenoid voltage and design

<table>
<thead>
<tr>
<th>Coding</th>
<th>Electrical connection</th>
<th>Nominal voltage</th>
<th>Protection class (IEC 60529)</th>
<th>PR controller</th>
<th>ZV, ZV1, V, P1R controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 12</td>
<td>DIN EN 175 301-803A</td>
<td>12 V DC, 24 V DC</td>
<td>IP 65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G 24</td>
<td></td>
<td></td>
<td>IP 65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMP 12</td>
<td>AMP Junior Timer</td>
<td>12 V DC, 24 V DC</td>
<td>IP 65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APM 24</td>
<td></td>
<td></td>
<td>IP 65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT 12</td>
<td>Deutsch (DT 04-2P)</td>
<td>12 V DC, 24 V DC</td>
<td>IP 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT 24</td>
<td></td>
<td></td>
<td>IP 65</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 10 Stroke limitation

<table>
<thead>
<tr>
<th>Coding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No designation</td>
</tr>
<tr>
<td>2</td>
<td>With adjustable stroke limitation (for housing version 1 and 4: all sizes; for housing version 2 and 3: only V60N-090, V60N-130)</td>
</tr>
<tr>
<td>2/...</td>
<td>Stroke limitation fixed with specification of the set geometric displacement V_g ($cm^3/rev.$)</td>
</tr>
</tbody>
</table>

Table 11 Connections

<table>
<thead>
<tr>
<th>Coding</th>
<th>Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>No designation</td>
<td>DIN EN ISO 228-1</td>
</tr>
<tr>
<td>UNF</td>
<td>SAE J 514</td>
</tr>
</tbody>
</table>
Order coding example:
V60N-110 RDYN-2-0-01/LSNR-350-A00/76- C 022

Table 12 Thru-shaft versions

<table>
<thead>
<tr>
<th>Coding V60N</th>
<th>Flange</th>
<th>Shaft</th>
</tr>
</thead>
<tbody>
<tr>
<td>060</td>
<td>090/110</td>
<td>130</td>
</tr>
<tr>
<td>C 010</td>
<td>--</td>
<td>C 030</td>
</tr>
<tr>
<td>C 011</td>
<td>C 021</td>
<td>C 031</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 012</td>
<td>C 022</td>
<td>C 032</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 013</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 014</td>
<td>C 024</td>
<td>C 034</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>C 026</td>
<td>C 036</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 015</td>
<td>C 025</td>
<td>C 035</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>C 027</td>
<td>C 037</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>C 028</td>
<td>C 038</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE
Pay attention to the maximum permissible weight torque and drive torque, as the flange or shaft may be damaged otherwise.

NOTE
An additional support is to be provided for pump combinations.

1) ANSI B 92.1, FLAT ROOT SIDE FIT, spline width deviating from the standard, s = 2.357-0.03
2.2 Controller

V60N-130

1. Type L controller mounting point
2. Type LSNR, LSNRT, QNR, NR, NR3, PR, ZW controller mounting point
3. Type V controller mounting point

V60N-060/090/110

1. Type LSNR, LSNRT, QNR, ZV, ZV1, NR, NR2, PR, P1R, ZL, ZW controller mounting point
2.2.1 LSNR, LSNRT controllers

The LSNR, LSNRT controllers are flow controllers that generate a variable, speed-independent flow rate. They adapt the geometric displacement of the pump to the required flow rate of the consumer and regulate a constant difference between load pressure and pump pressure.

The integrated pressure limitation restricts the maximum pressure to a set value.

LSNR
- Connection X-R sealed
- Standard version for combination with hydraulic valves that relieve the LS signal in the valve, for example, type PSV proportional directional spool valve

LSNRT
- Connection X-R open
- Only for use with hydraulic valves without their own relief of the LS signal

Coding LSNR

1. Delivery flow controller: Regulates a constant difference between load pressure and pump pressure
2. Pressure limitation: Limits the pump pressure to a maximum value

Coding LSNRT

1. Delivery flow controller: Regulates a constant difference between load pressure and pump pressure
2. Pressure limitation: Limits the pump pressure to a maximum value
3. Relief of the LS signal (only LSNRT)

Characteristic curve LSNR, LSNRT

1. Approx. 4 bar
Coding LSNR, LSNRT

1. Differential pressure Δp (stand-by pressure)
2. Maximum pressure p_{max} (pressure limitation)
3. Dynamic throttle
4. X port for LS signal: G 1/4
 Order coding for adapter to 9/16-18 UNF (SAE-6): 7993245.00

Adjustment range for ⊗ and ⊖ restricted by retaining ring.

<table>
<thead>
<tr>
<th>Pressure adjustment</th>
<th>Pressure range (bar)</th>
<th>Δp (bar)/revolution</th>
<th>Factory-set pressure setting (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum pressure p_{max}</td>
<td>20 ... 400</td>
<td>Approx. 50</td>
<td>300</td>
</tr>
<tr>
<td>Differential pressure Δp</td>
<td>20 ... 55</td>
<td>Approx. 10</td>
<td>27</td>
</tr>
</tbody>
</table>

CAUTION
Risk of injury on overloading components due to incorrect pressure settings!
Risk of minor injury.
- Always monitor the pressure gauge when setting and changing the pressure.
2.2.2 QNR controller

The QNR controller is a delivery flow controller that generates a constant flow rate independently of the speed. It regulates a constant differential pressure via an orifice in the P gallery. The differential pressure is adjustable between 20 and 55 bar. The orifice is available in various graduations (see table).

The integrated pressure limitation restricts the maximum pressure to a set value.

Coding QNR

1. Delivery flow controller: Regulates a constant differential pressure before and after the orifice
2. Pressure limitation: Limits the pump pressure to a maximum value
3. Orifice according to table

Order coding example: V60N-110 RDYN-1-0-03/QNR/5-350

<table>
<thead>
<tr>
<th>Orifice (mm)</th>
<th>Flow rate (lpm) at 20 bar differential pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>23</td>
</tr>
<tr>
<td>3.5</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>42</td>
</tr>
<tr>
<td>4.5</td>
<td>53</td>
</tr>
<tr>
<td>5</td>
<td>65</td>
</tr>
<tr>
<td>5.5</td>
<td>79</td>
</tr>
<tr>
<td>6</td>
<td>94</td>
</tr>
<tr>
<td>6.5</td>
<td>110</td>
</tr>
<tr>
<td>7</td>
<td>127</td>
</tr>
<tr>
<td>7.5</td>
<td>146</td>
</tr>
<tr>
<td>8</td>
<td>166</td>
</tr>
<tr>
<td>8.5</td>
<td>188</td>
</tr>
<tr>
<td>9</td>
<td>210</td>
</tr>
<tr>
<td>9.5</td>
<td>234</td>
</tr>
<tr>
<td>10</td>
<td>260</td>
</tr>
</tbody>
</table>
Coding **QNR**

Determination of the flow rate

\[Q = 0.55 \cdot d^2 \sqrt{\Delta p} \]

- \(Q \) = Flow rate (lpm)
- \(d \) = Orifice diameter (mm)
- \(\Delta p \) = Pressure difference (bar)

NOTE

The hosing varies depending on the size and rotation direction.
Coding QNR

1. Differential pressure Δp
2. Maximum pressure p_{max} (pressure limitation)
3. Dynamic throttle

Adjustment range for ① and ② restricted by retaining ring.

<table>
<thead>
<tr>
<th>Pressure adjustment</th>
<th>Pressure range (bar)</th>
<th>Δp (bar)/revolution</th>
<th>Factory-set pressure setting (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum pressure p_{max}</td>
<td>20 ... 400</td>
<td>Approx. 50</td>
<td>300</td>
</tr>
<tr>
<td>Differential pressure Δp</td>
<td>20 ... 55</td>
<td>Approx. 10</td>
<td>27</td>
</tr>
</tbody>
</table>

⚠️ CAUTION
Risk of injury on overloading components due to incorrect pressure settings!
Risk of minor injury.
- Always monitor the pressure gauge when setting and changing the pressure.
2.2.3 ZV, ZV1 and V controller

The ZV-, ZV1- and V controllers are electrical-proportional flow controllers that generate a variable, speed-dependent flow rate. They adjust the geometric displacement of the pump based on an electrical input signal. The resulting flow rate depends on the geometric displacement and the rotation speed.

The required pilot pressure for adjusting the pivoting angle is tapped internally. When used in open centre systems with operating pressures of < 25 bar, an external auxiliary pump or a pre-load valve must be provided to ensure reliable adjustment.

ZV controller: V60N-060/090/110, increasing characteristic curve
Nur possible in combination with an NR2 coding pressure controller!

ZV1 controller: V60N-060/090/110, decreasing characteristic curve
Nur possible in combination with an NR2 coding pressure controller!

V controller: V60N-130, increasing characteristic curve
Nur possible in combination with an NR3 coding pressure controller!

Codings

- **NR2/ZV**
 - 1. ZV controller
 - 2. NR2 controller
 - 3. External auxiliary pump, pressure-limiting valve and check valve (not included)
 - Recommended flow rate: 3-4 lpm
 - Recommended pressure: 40-60 bar

- **NR2/ZV1**
 - 1. ZV1 controller
 - 2. NR2 controller
 - 3. External auxiliary pump, pressure-limiting valve and check valve (not included)
 - Recommended flow rate: 3-4 lpm
 - Recommended pressure: 40-60 bar
Coding NR3/V/L

1 V controller
2 NR3 controller
3 L controller (installed as standard for V60N-130)
4 External auxiliary pump, pressure-limiting valve and check valve (not included in scope of delivery)

Coding ZV

Coding ZV1

I current (mA); V_g geometric displacement (%)

NOTE
$V_g = 0 \text{ cm}^3/\text{rev}$ possible through the use of an auxiliary pump.
At $V_g = 0 \text{ cm}^3/\text{rev}$, additional rinsing via the drain port is required to ensure sufficient lubrication of the pump. Recommended flow rate: 3 lpm.
I current (mA); \(V_g \) geometric displacement (%)

NOTE

\(V_g = 0 \) cm³/rev possible through the use of an auxiliary pump.
At \(V_g = 0 \) cm³/rev, additional rinsing via the drain port is required to ensure sufficient lubrication of the pump. Recommended flow rate: 3 lpm.
2.2.4 NR, NR2, NR3 controller

The NR, NR2, NR3 controllers are pressure controllers with a fixed pressure setting. As soon as the pump pressure exceeds the set value, they reduce the pivoting angle of the pump and regulate a constant pressure level. The pressure setting is adjusted using a setting screw on the controller, and, in addition, an external pilot valve can be connected to the X port to enable a remote adjustment when necessary.

The NR, NR2, NR3 controllers can either be used in constant pressure systems or as a low-loss pressure limitation in combination with an electric proportional flow controller.

NR controller: Individually or in combination with type ZL and L power controllers

NR2 controller: Only in combination with type ZV and ZV1 flow controllers

NR3 controller: Only in combination with type V flow controllers

Coding NR, NR2

1. Main stage
2. Pilot valve
3. Dynamic throttle
4. X port for external pilot valve (optional)

Coding NR3/V/L

1. V controller
2. NR3 controller
3. L controller (installed as standard for V60N-130)
4. External auxiliary pump, pressure-limiting valve and check valve (not included in scope of delivery)
Coding NR, NR2, NR3

1. Approx. 4 bar

\[p_B \] operating pressure (bar); \(Q \) delivery flow (%)

Adjustment range for 1 and 2 restricted by retaining ring.

<table>
<thead>
<tr>
<th>Pressure adjustment</th>
<th>Pressure range (bar)</th>
<th>(\Delta p) (bar)/revolution</th>
<th>Factory-set pressure setting (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum pressure (p_{\text{max}})</td>
<td>20 ... 400</td>
<td>Approx. 50</td>
<td>300</td>
</tr>
</tbody>
</table>

CAUTION

Risk of injury on overloading components due to incorrect pressure settings!
Risk of minor injury.
- Always monitor the pressure gauge when setting and changing the pressure.
2.2.5 PR, P1R controllers

The PR and P1R controllers are electric proportional pressure controllers. As soon as the pump pressure exceeds the set value, the controller reduces the pivoting angle of the pump and regulates a constant pressure level.

The minimum and maximum pressures are set mechanically on the controller. In between these values, the pressure can be adjusted proportionally using an electrical signal.

PR controller: Increasing characteristic curve, all sizes, cannot be combined with other pump controllers (type ZL or ZV)

P1R controller: Decreasing characteristic curve, only V60N-060/090/110, cannot be combined with other pump controllers (type ZL or ZV)

Coding PR

- 1 Minimum pressure setting p_{min}
- 2 Maximum pressure setting p_{max}
- 3 Electric proportional pressure adjustment
- 4 Dynamic throttle

Coding P1R

- 1 Maximum pressure setting p_{max}
- 2 Maximum pressure reduction p_{red}
- 3 Electric proportional pressure adjustment
- 4 Dynamic throttle
Coding PR, P1R

1. Approx. 4 bar

\[p_b \text{ operating pressure (bar); } Q \text{ delivery flow (\%)} \]

Coding PR

1. Minimum pressure \(p_{\text{min}} \)
2. Maximum pressure \(p_{\text{max}} \)
3. Electric proportional pressure adjustment
4. Dynamic throttle
 - Adjustment area for 1 and 2 restricted by retaining ring.

<table>
<thead>
<tr>
<th>Pressure adjustment</th>
<th>Pressure range (bar)</th>
<th>(\Delta p) (bar)/revolution</th>
<th>Factory-set pressure setting (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum pressure (p_{\text{max}}) (PR)</td>
<td>20 to 400</td>
<td>Approx. 50</td>
<td>300</td>
</tr>
<tr>
<td>Maximum pressure (p_{\text{max}}) (P1R)</td>
<td>20 to 400</td>
<td>Approx. 140</td>
<td>300</td>
</tr>
<tr>
<td>Minimum pressure (p_{\text{min}})</td>
<td>20 to 55</td>
<td>Approx. 10</td>
<td>27</td>
</tr>
</tbody>
</table>

⚠️ CAUTION

Risk of injury on overloading components due to incorrect pressure settings!
Risk of minor injury.
- Always monitor the pressure gauge when setting and changing the pressure.
2.2.6 ZL and L controllers

The ZL and L controllers are power controllers with fixed settings. As soon as the product of geometric displacement and pressure exceeds the set value, the controller reduces the pivoting angle of the pump to protect the drive shaft, motor or gearbox from overload ($p_b \times V_g = \text{constant}$).

ZL controller: V60N-060/090/110

L controller: V60N-130 (series)

The setting is made either as a torque limitation (Nm) or power limitation (kW) at the corresponding rotation speed (rpm).

\[
M = \frac{V_g \cdot \Delta p}{20 \cdot \pi \cdot \eta_{mh}} \text{ (Nm)}
\]

\[
P = \frac{2\pi \cdot M \cdot n}{60000} = \frac{Q \cdot \Delta p}{600 \cdot \eta_t} \text{ (kW)}
\]

Drive torque

Drive power

\[V_g = \text{Geometric output volume (cm}^3/\text{rev)}\]

\[\Delta p = \text{Differential pressure}\]

\[n = \text{Rotation speed (rpm)}\]

\[\eta_v = \text{Volumetric efficiency}\]

\[\eta_{mh} = \text{Mechanical-hydraulic efficiency}\]

\[\eta_t = \text{Overall efficiency} \eta_t = \eta_v \cdot \eta_{mh}\]

\[Q = \text{Flow rate (lpm)}\]

\[M = \text{Torque (Nm)}\]

\[P = \text{Power (kW)}\]

Coding LSNR/ZL

Coding LSNR/L

1. ZL controller
2. LSNR controller
Coded ZL, /L

\[
\begin{array}{c}
\text{V}_{g} \\
\text{pB pressure (bar)}
\end{array}
\]

\[
\begin{array}{c}
\text{V}_{g} \text{ geometric displacement (%)}
\end{array}
\]

Coded ZL
Intermediate plate version

1 Torque setting

Torque setting

<table>
<thead>
<tr>
<th></th>
<th>(\Delta M) (Nm)/revolution</th>
<th>Factory-set torque setting (Nm)</th>
<th>Adjustment area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power controller ZL</td>
<td>Approx. 190</td>
<td>200</td>
<td>25 ... 100% of (N_{\text{max}})</td>
</tr>
<tr>
<td>Power controller L</td>
<td>Approx. 190</td>
<td>700</td>
<td>200 ... 700 Nm</td>
</tr>
</tbody>
</table>

Coded L

1 Torque setting
2.2.7 ZW intermediate plate

The ZW intermediate plate is a 45° spacer plate. For V60N-060/090/110, it is required for housing versions with radial connections (coding 2 and 3) to avoid a collision between the pump controller and the suction or pressure line.
3.1 General

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation</td>
<td>Variable displacement axial piston pump</td>
</tr>
<tr>
<td>Design</td>
<td>Axial piston pump according to the swash plate principle</td>
</tr>
<tr>
<td>Mounting</td>
<td>Mounting flange according to DIN ISO 7653, DIN ISO 3019-1 or DIN ISO 3019-2</td>
</tr>
<tr>
<td>User interface</td>
<td>Primed RAL 7043</td>
</tr>
<tr>
<td>Drive/output torque</td>
<td>See Chapter 3.1, "General" ("Max. permissible drive/output torque")</td>
</tr>
<tr>
<td>Installation position</td>
<td>Any (for installation information see Chapter 5, "Assembly, operation and maintenance recommendations")</td>
</tr>
<tr>
<td>Rotation direction</td>
<td>Clockwise or anti-clockwise</td>
</tr>
<tr>
<td>Change of rotating direction</td>
<td>V60N-060/-090/-110: Turn the end plate of the pump (see dimension diagram) and replace the port plate, see also Assembly instructions for variable displacement axial piston pump type V60N: B 7960 N</td>
</tr>
</tbody>
</table>

Connections
- Suction port
- Pressure connection
- Drain port
- Pressure gauge connection

Hydraulic fluid
- Hydraulic oil according to Part 1 to 3; ISO VG 10 to 68 according to DIN 51519
- Viscosity range: min. 10; max. 1000 mm²/s
- Optimal operation between 16 and 60 mm²/s
- See Chapter 5.2.3, "Restrictions during cold-start and warm-up phase"
- Also suitable for biologically degradable hydraulic fluids type HEPG (polyalkylene glycol) and HEES (synthetic ester) at operating temperatures up to approx. +70°C

Cleanliness level
ISO 4406 19/17/14

Temperatures
- Surrounding area: -40°C to +60°C (observe viscosity range)
- Oil: - 25°C to +80°C (observe viscosity range)
- Start temperature: Down to -40°C permissible (note start viscosities), if the application limits are observed, See "Operating instructions"
- Biologically degradable hydraulic fluids: Not above +70°C

NOTE
When switching on the pump, the transmission side oil must be warmer than -25 °C.
Pressure and delivery flow

Operating pressure

See [Chapter 2, "Available versions, main data"](chapter).

Geometric displacement

See [Chapter 2, "Available versions, main data"](chapter).

Weight

<table>
<thead>
<tr>
<th>Type V60N</th>
<th>Without controller (kg)</th>
<th>With controller (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ZL</td>
</tr>
<tr>
<td>060</td>
<td>23</td>
<td>+1.1</td>
</tr>
<tr>
<td>090</td>
<td>26</td>
<td>+1.1</td>
</tr>
<tr>
<td>110</td>
<td>29</td>
<td>+1.1</td>
</tr>
<tr>
<td>130</td>
<td>29.8</td>
<td>+1.1</td>
</tr>
</tbody>
</table>

Additional parameters

<table>
<thead>
<tr>
<th>Designation</th>
<th>Nominal size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>060</td>
</tr>
<tr>
<td>Max. swash plate angle</td>
<td>20.5°</td>
</tr>
<tr>
<td>Absolute inlet pressure required in open circuit</td>
<td>0.85 bar</td>
</tr>
<tr>
<td>Max. permissible housing pressure (static/dynamic)</td>
<td>2 bar/3 bar</td>
</tr>
<tr>
<td>Max. permissible inlet pressure (static/dynamic)</td>
<td>20 bar/30 bar</td>
</tr>
<tr>
<td>Max. rotation speed during suction operation and max. swash plate angle at 1 bar abs. Inlet pressure</td>
<td>2500 rpm</td>
</tr>
<tr>
<td>Max. rotation speed with zero stroke and 1 bar abs. Inlet pressure</td>
<td>3000 rpm</td>
</tr>
<tr>
<td>Min. rotation speed in continuous operation</td>
<td>500 rpm</td>
</tr>
<tr>
<td>Required drive torque at 100 bar</td>
<td>100 Nm</td>
</tr>
<tr>
<td>Drive power at 250 bar and 2000 rpm</td>
<td>53 kW</td>
</tr>
<tr>
<td>Weight torque</td>
<td>30 Nm</td>
</tr>
<tr>
<td>Inertia torque</td>
<td>0.005 kg m²</td>
</tr>
<tr>
<td>Noise level at 250 bar, 1500 rpm and max. swash plate angle (measured in acoustic measurement chamber according to DIN ISO 4412-1, measuring distance 1 m)</td>
<td>75 dB(A)</td>
</tr>
</tbody>
</table>
Max. permissible drive/output torque

<table>
<thead>
<tr>
<th>Designation</th>
<th>Nominal size (Nm)</th>
<th>060</th>
<th>090</th>
<th>110</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel key splined shaft D</td>
<td>Drive/output</td>
<td>530/100</td>
<td>800/600</td>
<td>800/600</td>
<td>800/700</td>
</tr>
<tr>
<td>Spline shaft M</td>
<td>Drive/output</td>
<td>--</td>
<td>530/530</td>
<td>530/530</td>
<td>--</td>
</tr>
<tr>
<td>Spline shaft H</td>
<td>Drive/output</td>
<td>210/100</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Spline shaft U</td>
<td>Drive/output</td>
<td>210/100</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Spline shaft T</td>
<td>Drive/output</td>
<td>340/100</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Spline shaft S</td>
<td>Drive/output</td>
<td>530/100</td>
<td>640/600</td>
<td>640/600</td>
<td>640/640</td>
</tr>
<tr>
<td>Spline shaft Q</td>
<td>Drive/output</td>
<td>--</td>
<td>900/600</td>
<td>900/600</td>
<td>900/700</td>
</tr>
</tbody>
</table>
3.2 Characteristics

Delivery flow and power (basic pump)

The diagrams show delivery flow and drive power over pressure without a controller at 1500 rpm.

1. Delivery flow/pressure
2. Drive power/pressure (max. swash plate angle)
3. Drive power/pressure (zero stroke)

Inlet pressure and self-suction speed

The diagrams show the inlet pressure/rotation speed at the max. swash plate angle and an oil viscosity of 75 mm²/s.

1. 0 bar relative = 1 bar absolute
Acting times

Acting times T_1 (LSNR controller)
The diagram illustrates the on-stroke time based on the pressure for the LSNR controller, i.e. the time required to swing out the pump and to adjust the geometric displacement from the minimum to the maximum.

Acting times T_2 (LSNR controller)
The diagram shows the destroke time based on the pressure for the LSNR controller, i.e. the time required to swing in the pump and to adjust the geometric displacement from the maximum to the minimum.

Acting times T_u, T_1 and T_2

S_s = positioning travel of actuator
T_u = delay < 3 ms
T_1 = on-stroke time
T_2 = destroke time
p = pressure

LS line approx. 10% of the volume of the P line
3.3 Electrical parameters

Controller coding ZV, ZV1, PR, P1R

<table>
<thead>
<tr>
<th></th>
<th>12 VDC</th>
<th>24 VDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance R_{0V}</td>
<td>5.9 Ω</td>
<td>24 Ω</td>
</tr>
<tr>
<td>Current, cold I_{0V}</td>
<td>2.0 A</td>
<td>1.0 A</td>
</tr>
<tr>
<td>Limit current I_{G}</td>
<td>1.26 A</td>
<td>0.63 A</td>
</tr>
<tr>
<td>Limit power P_{G}</td>
<td>14.1 W</td>
<td>14.1 W</td>
</tr>
<tr>
<td>Actuated time</td>
<td>S1 (100 %)</td>
<td></td>
</tr>
<tr>
<td>Dither frequency</td>
<td>210 Hz</td>
<td></td>
</tr>
<tr>
<td>Dither amplitude</td>
<td>0 % ≤ A_{O} ≤ 20 %</td>
<td></td>
</tr>
</tbody>
</table>

Controller coding V

<table>
<thead>
<tr>
<th></th>
<th>12 VDC</th>
<th>24 VDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance R_{0V}</td>
<td>7 Ω</td>
<td>24 Ω</td>
</tr>
<tr>
<td>Current, cold I_{0V}</td>
<td>1.7 A</td>
<td>1.0 A</td>
</tr>
<tr>
<td>Limit current I_{G}</td>
<td>1.3 A</td>
<td>0.7 A</td>
</tr>
<tr>
<td>Limit power P_{G}</td>
<td>17.7 W</td>
<td>17.8 W</td>
</tr>
<tr>
<td>Actuated time</td>
<td>S1 (100 %)</td>
<td></td>
</tr>
<tr>
<td>Dither frequency</td>
<td>60 - 110 Hz</td>
<td></td>
</tr>
<tr>
<td>Dither amplitude</td>
<td>20 % ≤ A_{O} ≤ 40 %</td>
<td></td>
</tr>
</tbody>
</table>

Electrical connection

- **Coding G 12, G 24**
- **Coding AMP 12, AMP 24**
- **Coding DT 12, DT 24**
4 Dimensions

All dimensions in mm, subject to change.

4.1 Basic pump

4.1.1 Type V60N-060

Rotating direction **clockwise** (viewed from shaft journal)

Rotating direction **anti-clockwise** (viewed from shaft journal)

<table>
<thead>
<tr>
<th>Flange version</th>
<th>Housing version</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>-1</td>
<td>253.5</td>
<td>100.0</td>
</tr>
<tr>
<td>F, Z, X</td>
<td>-1</td>
<td>249.8</td>
<td>96.3</td>
</tr>
<tr>
<td>Y</td>
<td>-2, -3</td>
<td>292.0</td>
<td>100.0</td>
</tr>
<tr>
<td>F, Z, X</td>
<td>-2, -3</td>
<td>288.3</td>
<td>96.3</td>
</tr>
</tbody>
</table>

Ports P, S and D (DIN EN ISO 228-1)

<table>
<thead>
<tr>
<th>P</th>
<th>Pressure port G 3/4 (BSPP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Flange suction port</td>
</tr>
<tr>
<td>D</td>
<td>Drain port G 3/4 (BSPP)</td>
</tr>
<tr>
<td>X</td>
<td>G 1/4 (BSPP)</td>
</tr>
</tbody>
</table>

For coding UNF connections SAE J 514

<table>
<thead>
<tr>
<th>P</th>
<th>Pressure connection 1 1/16-12 UN-2B</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Flange suction port</td>
</tr>
<tr>
<td>D</td>
<td>Drain port 1 1/16-12 UN-2B</td>
</tr>
<tr>
<td>X</td>
<td>G 1/4 (BSPP) (DIN EN ISO 228-1) with adapter for 7/16-20 (SAE-4)</td>
</tr>
</tbody>
</table>
Stroke limitation

Stroke limitation (Vg approx. 4 cm³/rev.)

Shaft versions

Parallel key splined shaft
Coding D (similar to DIN ISO 14)
B8x32x35

Spline shaft
Coding S
(SAE-C 14T 12/24DP)

Spline shaft
Coding T
(SAE-B-B 15T 16/32DP)

Spline shaft
Coding H
(SAE-B 13T 16/32DP)

Spline shaft
Coding U
(SAE-B 13T 16/32DP short)
Flange versions

Coding Y
(DIN ISO 7653)

Coding F
(SAE-C 4-hole)
(127-4 DIN ISO 3019-1)

Coding Z
(SAE-B 4-hole)
(101-4 DIN ISO 3019-1)

Coding X
(SAE-B 2-hole)
(101-2 DIN ISO 3019-1)

1. Bleeding G 1/8

Housing version -1 (axial ports)

1. Delivery includes attachment kit for suction intake according to [Chapter 6.1.1, "Suction intake"](#)
Housing version -2 (radial ports, with thru-shaft)

1. Flange version (output side)

<table>
<thead>
<tr>
<th>Rotating direction clockwise</th>
<th>Rotating direction anti-clockwise</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = suction port</td>
<td>A = pressure port</td>
</tr>
<tr>
<td>B = pressure port</td>
<td>B = suction port</td>
</tr>
</tbody>
</table>

Flange version (output side)

Coding **C 010**
(DIN ISO 7653)

Coding **C 011, C 012, C 013**
(SAE-A 2-Hole)
Housing version -3 (radial ports)

Rotating direction clockwise

- A = suction port
- B = pressure port

Rotating direction anti-clockwise

- A = pressure port
- B = suction port
4.1.2 Type V60N-090

Rotation direction clockwise (viewed from shaft journal)

Rotation direction anti-clockwise (viewed from shaft journal)

1. Shaft version
2. Flange version
3. Housing version
4. Thread M10 for attaching a support
5. Controllers and intermediate plates according to Chapter 4.2, "Controllers and intermediate plates"
6. Attachment kit for suction intake according to Chapter 6.1.1, "Suction intake" is included in the delivery

<table>
<thead>
<tr>
<th>Flange version</th>
<th>Housing version</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>-1</td>
<td>277.5</td>
<td>110.0</td>
<td>198.0</td>
</tr>
<tr>
<td>Y</td>
<td>-2, -3</td>
<td>310.5</td>
<td>110.0</td>
<td>198.0</td>
</tr>
<tr>
<td>F, G</td>
<td>-1</td>
<td>273.8</td>
<td>106.3</td>
<td>194.3</td>
</tr>
<tr>
<td>F, G</td>
<td>-2, -3</td>
<td>306.8</td>
<td>106.3</td>
<td>194.3</td>
</tr>
</tbody>
</table>

Ports P, S and D (DIN EN ISO 228-1)

<table>
<thead>
<tr>
<th>P</th>
<th>Pressure port G 1 (BSPP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Flange suction port</td>
</tr>
<tr>
<td>D</td>
<td>Drain port G 3/4 (BSPP)</td>
</tr>
<tr>
<td>X</td>
<td>G 1/4 (BSPP)</td>
</tr>
</tbody>
</table>

For coding UNF connections SAE J 514

<table>
<thead>
<tr>
<th>P</th>
<th>Pressure port 1 5/16-12 UN-2B</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Flange suction port</td>
</tr>
<tr>
<td>D</td>
<td>Drain port 1 1/16-12 UN-2B</td>
</tr>
<tr>
<td>X</td>
<td>G 1/4 (BSPP) (DIN EN ISO 228-1) with adapter for 7/16-20 (SAE-4)</td>
</tr>
</tbody>
</table>
Stroke limitation

Stroke limitation (Vₕ approx. 5 cm³/rev.)

Shaft versions

Parallel key splined shaft
Coding D
(similar to DIN ISO 14)
B8x32x35

Spline shaft
Coding S
(SAE-C 14T 12/24DP)

Spline shaft
Coding M
(W30x2x14x9g DIN 5480)

Spline shaft
Coding Q
(SAE-CS 21T 16/32 DP)
Flange versions

Coding Y
(DIN ISO 7653)

Coding F
(SAE-C 4-hole)
(127-4 DIN ISO 3019-1)

Coding G
(125 B4 HW DIN ISO 3019-2)

Housing version -1 (axial ports)

1 Delivery includes attachment kit for suction intake according to Chapter 6.1.1, "Suction intake"
Housing version -2 (radial ports, with thru-shaft)

1 Flange version (output side)

<table>
<thead>
<tr>
<th>Rotation direction clockwise</th>
<th>Rotation direction anti-clockwise</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = suction port</td>
<td>A = pressure connection</td>
</tr>
<tr>
<td>B = pressure connection</td>
<td>B = suction port</td>
</tr>
</tbody>
</table>

Flange version (output side)

Coding C 021, C 022
(SAE-A 2-hole)

1 Stroke limitation
Coding C 024, C 026
(SAE-B 2-hole)

Coding C 025
(SAE-B 4-hole)

1 Stroke limitation

Coding C 027
(SAE-C 2-hole)

Coding C 028
(SAE-C 4-hole)

1 Stroke limitation
Housing version -3 (radial ports)

Rotation direction clockwise
- A = suction port
- B = pressure connection

Rotation direction anti-clockwise
- A = pressure connection
- B = suction port

Housing version -4 (axial ports)

Ports P, S (SAE J 518)
- P: Pressure connection SAE 3/4" (6000 psi)
- S: Suction port SAE 2" (3000 psi)
4.1.3 Type V60N-110

Rotation direction **clockwise** (viewed from shaft journal)

<table>
<thead>
<tr>
<th>Flange version</th>
<th>Housing version</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>-1</td>
<td>279.5</td>
<td>112.0</td>
<td>201.0</td>
</tr>
<tr>
<td>F</td>
<td>-1</td>
<td>275.7</td>
<td>108.7</td>
<td>197.7</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>278.5</td>
<td>111.0</td>
<td>200.0</td>
</tr>
<tr>
<td>Y</td>
<td>-2, -3</td>
<td>313.5</td>
<td>112.0</td>
<td>201.0</td>
</tr>
<tr>
<td>F</td>
<td>-2, -3</td>
<td>309.7</td>
<td>108.2</td>
<td>197.7</td>
</tr>
<tr>
<td>P</td>
<td>-2, -3</td>
<td>312.5</td>
<td>111.0</td>
<td>200.0</td>
</tr>
</tbody>
</table>

Ports P, S and D (DIN EN ISO 228-1)

- **P**: Pressure port G 1 (BSPP)
- **S**: Flange suction port
- **D**: Drain port G 3/4 (BSPP)
- **X**: G 1/4 (BSPP)

For coding UNF connections SAE J 514

- **P**: Pressure port 1 5/16-12 UN-2B
- **S**: Flange suction port
- **D**: Drain port 1 1/16-12 UN-2B
- **X**: G 1/4 (BSPP) (DIN EN ISO 228-1) with adapter for 7/16-20 (SAE-4)

1. Shaft version
2. Flange version
3. Housing version
4. Thread M10 for attaching a support
5. Controllers and intermediate plates according to Chapter 4.2, "Controllers and intermediate plates"
6. Attachment kit for suction intake according to Chapter 6.1.1, "Suction Intake" is included in the delivery
Stroke limitation

1 Stroke limitation (V_g approx. 6 cm³/rev.)

Shaft versions

Parallel key splined shaft
- Coding D
- (similar to DIN ISO 14)
- 88x32x35

Spline shaft
- Coding S
- (SAE-C 14T 12/24DP)

Spline shaft
- Coding M
- (W30x2x14x9g DIN 5480)

Spline shaft
- Coding Q
- (SAE-CS 21T 16/32 DP)
Flange versions

Coding Y
(DIN ISO 7653)

Coding F
(SAE-C 4-hole)
(127-4 DIN ISO 3019-1)

Coding P
(DIN ISO 7653)

Coding G
(125 B4 HW DIN ISO 3019-2)

Housing version -1 (axial ports)

1 Delivery includes attachment kit for suction intake according to Chapter 6.1.1, "Suction intake"
Housing version -2 (radial ports with thru-shaft)

1 Flange version (output side)

<table>
<thead>
<tr>
<th>Rotation direction clockwise</th>
<th>Rotation direction anti-clockwise</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = suction port</td>
<td>A = pressure connection</td>
</tr>
<tr>
<td>B = pressure connection</td>
<td>B = suction port</td>
</tr>
</tbody>
</table>

Flange version (output side)

Coding C 021, C 022
(SAE-A 2-hole)
Coding C 024, C 026
(SAE-B 2-hole)

Coding C 025
(SAE-B 4-hole)

Coding C 027
(SAE-C 2-hole)

Coding C 028
(SAE-C 4-hole)
Housing version -3 (radial ports)

<table>
<thead>
<tr>
<th>Rotation direction clockwise</th>
<th>Rotation direction anti-clockwise</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = suction port</td>
<td>A = pressure connection</td>
</tr>
<tr>
<td>B = pressure connection</td>
<td>B = suction port</td>
</tr>
</tbody>
</table>
4.1.4 Type V60N-130

Rotation direction **clockwise** (viewed from shaft journal)

Rotation direction **anti-clockwise** (viewed from shaft journal)

1. Shaft version
2. Flange version
3. Housing version
4. Thread M10 for attaching a support
5. Stroke limitation (13 cm³/rev.)
6. Controllers and intermediate plates according to Chapter 4.2, "Controllers and intermediate plates"
7. Attachment kit for suction intake according to Chapter 6.1.1, "Suction intake" is included in the delivery.

<table>
<thead>
<tr>
<th>Flange version</th>
<th>Housing version</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y, P</td>
<td>-1</td>
<td>269.5</td>
<td>69.5</td>
<td>240.5</td>
</tr>
<tr>
<td>F</td>
<td>-1</td>
<td>266.8</td>
<td>66.8</td>
<td>237.8</td>
</tr>
<tr>
<td>Y, P</td>
<td>-2</td>
<td>323.5</td>
<td>69.5</td>
<td>240.5</td>
</tr>
<tr>
<td>F</td>
<td>-2</td>
<td>320.8</td>
<td>66.8</td>
<td>237.8</td>
</tr>
</tbody>
</table>

Ports P, S and D (DIN EN ISO 228-1)

- **P** Pressure port G 1 (BSPP)
- **S** Flange suction port
- **D** Drain port G 3/4 (BSPP)
- **X** G 1/4 (BSPP)

For coding UNF connections SAE J 514

- **P** Pressure port 1 5/16-12 UN-2B
- **S** Flange suction port
- **D** Drain port 1 1/16-12 UN-2B
- **X** G 1/4 (BSPP) (DIN EN ISO 228-1) with adapter for 7/16-20 (SAE-4)
Shaft versions

Spline shaft
Coding D
(similar to DIN ISO 14)
B8x32x35

Spline shaft
Coding S
(SAE-C 14T 12/24DP)

Spline shaft
Coding Q
(SAE-CS 21T 16/32 DP)

Flange versions

Coding Y
(DIN ISO 7653)

Coding F
(SAE-C 4-hole)
(127-4 DIN ISO 3019-1)

Coding P
(DIN ISO 7653)
Housing version -1 (axial ports)

Rotation direction clockwise

Housing version -2 (radial ports, with thru-shaft)

Rotation direction anti-clockwise

Delivery includes attachment kit for suction intake according to Chapter 6.1.1, "Suction intake"
Flange version (output side)

Coding C 030
(ISO 7653-1985)

Coding C 031, C 032
(SAE-A 2-hole)

Coding C 034, C 036
(SAE-B 2-hole)

Coding C 035
(SAE-B 4-hole)

Coding C 038
(SAE-C 4-hole)
Housing version -3 (radial ports)

Rotation direction clockwise Rotation direction anti-clockwise
A = pressure connection A = suction port
B = suction port B = pressure connection
4.2 Controllers and intermediate plates

Coding LSNR, LSNRT

Connection X: G 1/4

LS signal port order coding for adapter for UNF thread 79 93245 00
NOTE

The piping varies depending on the size and direction of rotation.
Intermediate plates

Coding ZW

CAUTION
Risk of injury on overloading components due to incorrect pressure settings!
Risk of minor injury.
- Always monitor the pressure gauge when setting and changing the pressure.

Coding ZL
Intermediate plate version

Coding ZV, ZV1
Intermediate plate version
5 Assembly, operation and maintenance recommendations

5.1 Intended use

This product is intended exclusively for hydraulic applications (fluid technology).

The user must observe the safety measures and warnings in this documentation.

Essential requirements for the product to function correctly and safely:

- All information in this documentation must be observed. This applies in particular to all safety measures and warnings.
- The product must only be assembled and put into operation by qualified personnel.
- The product must only be operated within the specified technical parameters. The technical parameters are described in detail in this documentation.
- The operating and maintenance manual of the components, assemblies and the specific complete system must also always be observed.

If the product can no longer be operated safely:

1. Remove the product from operation and mark it accordingly.
 ✓ It is then not permitted to continue using or operating the product.

5.2 Assembly information

The product must only be installed in the complete system with standard and compliant connection components (screw fittings, hoses, pipes, fixtures etc.).

The product must be shut down correctly prior to dismounting (in particular in combination with hydraulic accumulators).

⚠️ **DANGER**

Risk to life caused by sudden movement of the hydraulic drives when dismantled incorrectly!

Risk of serious injury or death.

- Depressurise the hydraulic system.
- Perform safety measures in preparation for maintenance.
5.2.1 General information

The V60N variable displacement axial piston pump is designed for use in an open or semi-closed circuit.

It can be mounted on the usual mounting points (e.g. power take-off gearbox, combustion engine or electric drive, cardan shaft) using a flange mounting. Suitable coupling flanges are available as accessories for attachment to a cardan shaft "Coupling flange for cardan shafts".

In order to reduce the weight torque of the pump, a separate support can be attached in addition to the flange mounting. For this purpose, M10 threads are included in the pump housing (only V60N-090/110/130) See "Dimensions".

A change of rotating direction is available for types V60N-060, V60N-090 and V60N-110 variable displacement axial piston pumps. For conversion instructions, please contact HAWE Hydraulik SE.

During assembly, note the following principles:

Only trained persons are allowed to mount or remove the pump. Always ensure absolute cleanliness to prevent contamination from affecting the pump.

- Remove all plastic plugs before operation.
- Avoid installation above the tank (see installation positions in Chapter 5.2.3, "Installation positions").
- For electric reference values Chapter 2.2, "Controller". Suction intakes must be adhered to.
- Before initial use, fill the pump with hydraulic fluid and bleed. Automatic pump filling via the suction line by opening the drain ports is not possible.
- Never drain the pump.
- Always supply the pump with hydraulic fluid from the start. Even just a short period with insufficient hydraulic fluid can damage the pump. Such damage is not immediately visible once the pump is put into operation.
- Hydraulic fluid which flows back into the tank must not be sucked back in immediately (install baffles!).
- Before first use, run the pump for approx. 10 minutes at max. 50 bar after initial start-up.
- Do not use the entire pressure range of the pump until it has been thoroughly bled and flushed.
- From the start, always keep the temperature within the specified range (see Chapter 3, "Parameters"). Never exceed the maximum temperature.
- Always comply with the cleanliness level of the hydraulic fluid. In addition, always filter the hydraulic fluid appropriately (see Chapter 3, "Parameters").
- Self-installed filters in the suction line must be approved beforehand by HAWE Hydraulik.
- A system pressure-limiting valve must be installed in the pressure line so that the maximum system pressure is not exceeded.
5.2.2 Connections

The nominal width of the connecting lines depends on the specified operating conditions, the viscosity of the hydraulic fluid, the start-up and operating temperatures and the rotation speed of the pump. In principle we recommend the use of hose lines due to the superior damping characteristics.

Pressure connection

The pressure connection on type V60N-060 is established via a threaded connection G 3/4"; on type V60N-090/110/130 via a threaded connection G 1".

Observe the tightening torque specified by the fitting manufacturer.

Suction port

The suction port on all pumps is established via standardised suction intakes with a size which depends on the max. delivery flow of the pump.

The specifications of the max. delivery flow Q_{max} must be observed. These can be found in the following table.

<table>
<thead>
<tr>
<th>Nominal width (N)</th>
<th>38 (1 1/2")</th>
<th>42</th>
<th>50 (2")</th>
<th>64 (2 1/2")</th>
<th>76 (3")</th>
<th>6 (1 1/4)</th>
<th>7 (1 1/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_{max} (lpm)</td>
<td>75</td>
<td>90</td>
<td>125</td>
<td>190</td>
<td>250</td>
<td>90</td>
<td>125</td>
</tr>
</tbody>
</table>

The suction intakes can be ordered as an option with the pump.

If possible, route the suction line to the tank on a rising gradient. This allows trapped air to escape. Observe the specifications in Installation positions Chapter 5, "Assembly, operation and maintenance recommendations". The absolute suction pressure must not fall below 0.85 bar. A hose line should generally be used in preference to a rigid pipe.

Drain port

The V60N pumps have 2 drain ports G 3/4" or 1 1/16-12-UN-2B. A G 1/8" threaded connection is also available for the flange version SAE-B2, SAE-B4 and SAE-4. This is used for bleeding in the case of vertical installation positions.

The nominal width of the leakage line must not be less than 16 mm. The cross-section is determined by the max. permissible housing pressure.

Integrate the leakage line in the system in such a way as to prevent direct connection with the suction line of the pump. Both drain ports can be used simultaneously.

A separate leakage line from the controller to the tank is not required. Observe the specifications in Chapter 5.2.3, "Installation positions".

LS port for version LSNR, LSNRT

The LS line is connected to the controller via a G 1/4 threaded connection.

The nominal width of the line depends on the installation position of the pump and should be 10% of the pressure line capacity. A hose line should generally be used in preference to a rigid pipe connection.

- When the proportional directional spool valve is in a neutral position, the LS line must be fully relieved (only controller type LSNR, LSN)! In the case of controller type LSNRT, relief takes place internally in the controller.
5.2.3 Installation positions

The V60N variable displacement axial piston pump can be mounted in any installation position.

Observe the truck manufacturer's specifications if installing the pump directly on a truck power take-off.

A support is required for tandem pumps or two hydraulic pumps mounted in series (see Chapter 5.2.1, "General information"). The following points must be observed:

Horizontal installation: (pump below the min. fill level)

⇒ For horizontal installation, use the uppermost drain port

Vertical installation: (pump below the min. fill level)

⇒ Assemble the pump so that the pump mounting flange is facing upwards.
⇒ For vertical installation, use the uppermost drain port.
⇒ Also connect the G 1/8" bleeding port on the pump flange (see Chapter 4, "Dimensions").
⇒ Take appropriate measures to ensure continuous bleeding of this line (line routing/bleeding).

For installation with the pump flange facing downwards, please contact HAWE Hydraulik.
5.2.4 Tank installation

Tank installation (pump below the min. fill level)

The pump can be operated either with or without a suction intake. It is recommended to use a short suction intake (see Chapter 6.1.1, "Suction intake").

Additional notes regarding installation above the fill level

Special measures are required if the pump is installed above the fill level. The pump must not run dry via the pressure, intake, drain, bleed or control lines. This applies in particular to long periods of downtime.

- The leakage line must be installed in the tank in such a way that it ends below the oil level.
- Facilitate bleeding of connecting lines via separate bleed openings.
- Adjust the bleeding sequence to the specific installation.
- If necessary, a gear pump should be provided in order to draw air from the suction line.

For specialist advice on designing axial piston pumps, the following contact form is available: Checklist for designing variable displacement axial piston pumps: B 7960 checklist.

For further information on installation, operation and maintenance, see the relevant assembly instructions: B 7960, B 5488.
5.3 Operating instructions

Restrictions in operation during cold start phase and warm-up phase

<table>
<thead>
<tr>
<th>Phase</th>
<th>Temperature</th>
<th>Viscosity (mm²/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold start phase</td>
<td>-25 -40°C</td>
<td>< 1000</td>
</tr>
<tr>
<td>Warm-up phase</td>
<td>-25 80 °C</td>
<td>500 ... 1000</td>
</tr>
<tr>
<td>Normal operation</td>
<td>-25 80 °C</td>
<td>10 ... 500</td>
</tr>
</tbody>
</table>

NOTE
Optimum range: 16 - 60 mm²/s

Cold start phase:
- \(p_B = 20 \text{ – } 30 \text{ bar} \)
- \(n \leq 1000 \text{ rpm} \)

Warm-up phase:
- \(p_B = 20 \text{ – } 200 \text{ bar} \)
- \(n \leq 1500 \text{ rpm} \)

Normal operation:
No further restrictions. Service conditions according to Chapter 3 Parameters.

Note product configuration and pressure / flow rate
The statements and technical parameters in this documentation must be strictly observed. The instructions for the complete technical system must also always be followed.

NOTE
- Read the documentation carefully before usage.
- The documentation must be accessible to the operating and maintenance staff at all times.
- Keep documentation up to date after every addition or update.

CAUTION
Risk of injury on overloading components due to incorrect pressure settings!
Risk of minor injury.
- Always monitor the pressure gauge when setting and changing the pressure.
Purity and filtering of the hydraulic fluid

Fine contamination can significantly impair the function of the hydraulic component. Contamination can cause irreparable damage.

Examples of fine contamination include:
- Metal chips
- Rubber particles from hoses and seals
- Dirt due to assembly and maintenance
- Mechanical debris
- Chemical ageing of the hydraulic fluid

NOTE
Fresh hydraulic fluid from the drum does not always have the highest degree of purity. Under some circumstances the fresh hydraulic fluid must be filtered before use.

Adhere to the cleanliness level of the hydraulic fluid in order to maintain faultless operation. (also see cleanliness level in Chapter 3, "Parameters").

Additionally applicable document: D 5488/1 Oil recommendations
6 Other information

6.1 Accessories, spare parts and separate components

6.1.1 Suction intake

Order coding example:

V60N - 090 R DY N - 1 - 0 - 01/LSNR - 350 - A00/76

Table of suction intakes (including attachment kit)

<table>
<thead>
<tr>
<th>Nominal width (N)</th>
<th>Flow rate Q_{max} (lpm)</th>
<th>Geometric shape</th>
<th>Straight Order number</th>
<th>45° Order number</th>
<th>90° Order number</th>
<th>Thread A.</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A00/..</td>
<td>A45/..</td>
<td>A90/..</td>
<td>A..</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>h</td>
<td>h k</td>
<td>h k</td>
<td>h</td>
<td></td>
</tr>
<tr>
<td>38 (1 1/2")</td>
<td>75</td>
<td>65</td>
<td>79 93336 00</td>
<td>-</td>
<td>-</td>
<td>53 70</td>
<td>79 93344 00</td>
</tr>
<tr>
<td>42 (1 5/8")</td>
<td>90</td>
<td>-</td>
<td>85 40</td>
<td>79 93340 00</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>50 (2")</td>
<td>125</td>
<td>65</td>
<td>79 93337 00</td>
<td>96 40</td>
<td>79 93341 00</td>
<td>53 84</td>
<td>79 93345 00</td>
</tr>
<tr>
<td>64 (2 1/2")</td>
<td>190</td>
<td>90</td>
<td>79 93338 00</td>
<td>96 40</td>
<td>79 93342 00</td>
<td>109 129</td>
<td>79 93346 00</td>
</tr>
<tr>
<td>76 (3")</td>
<td>250</td>
<td>106</td>
<td>79 93339 00</td>
<td>106 40</td>
<td>79 93343 00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7 (1 1/2")</td>
<td>125</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>28.5</td>
<td>79 40719 00</td>
</tr>
<tr>
<td>7 UNF (7/8-12 UN-2B)</td>
<td>125</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>28.5</td>
<td>79 41599 00</td>
</tr>
</tbody>
</table>

A00/...

45/...

A90/...

A7

For pump orders, delivery includes the attachment kit for suction intakes, comprising:

- 4x hex bolt M8x16-8.8
- Sealing ring 44.2x3 NBR 70 Sh
- 2 mounting flange halves

(Order no. 79 93355 00)

NOTE

Use nominal width 38 (1 1/2") for reduced displacement volume only!

Observe installation information in Chapter 5, "Assembly, operation and maintenance recommendations".

© HAWE Hydraulik SE
6.1.2 Coupling flange for cardan shafts

Special coupling flanges for cardan shafts (Ø100-Ø8) according to ISO 7646.

For telescopic propshafts also with spacer ring and connecting screw for attachment to the drive shaft of the pump.

Coding SAE-C, SAE-CS

<table>
<thead>
<tr>
<th>Coding</th>
<th>Spline profile</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAE C</td>
<td>14T 12/24 DP</td>
<td>79 29555 00</td>
</tr>
<tr>
<td>SAE CS</td>
<td>21T 16/32 DP</td>
<td>79 42793 00</td>
</tr>
<tr>
<td>DIN ISO 14</td>
<td>B8 x 32 x 36</td>
<td>79 29709 00</td>
</tr>
</tbody>
</table>

Coding DIN ISO 014

<table>
<thead>
<tr>
<th>Coding</th>
<th>Spline profile</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAE-C</td>
<td>14T 12/24 DP</td>
<td>79 94495 00</td>
</tr>
<tr>
<td>SAE-CS</td>
<td>21T 16/32 DP</td>
<td>79 94479 00</td>
</tr>
<tr>
<td>DIN ISO 14</td>
<td>B8 x 32 x 36</td>
<td>79 94496 00</td>
</tr>
</tbody>
</table>
6.2 Planning information

Determination of nominal sizes

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivery flow</td>
<td>(Q = \frac{V_g \cdot n \cdot \eta_v}{1000} \text{ (l/min)})</td>
<td>Flow rate (lpm)</td>
</tr>
<tr>
<td>Drive torque</td>
<td>(M = \frac{V_g \cdot \Delta p}{20 \cdot \pi \cdot \eta_{mh}} \text{ (Nm)})</td>
<td>Torque (Nm)</td>
</tr>
<tr>
<td>Drive power</td>
<td>(P = \frac{2\pi \cdot M \cdot n}{60000} = \frac{Q \cdot \Delta p}{600 \cdot \eta_t} \text{ (kW)})</td>
<td>Power (kW)</td>
</tr>
</tbody>
</table>

- \(V_g \) = Geom. output volume (cm³/rev.)
- \(\Delta p \) = Differential pressure
- \(\eta_v \) = Volumetric efficiency
- \(\eta_{mh} \) = Mechanical-hydraulic efficiency
- \(\eta_t \) = Overall efficiency (\(\eta_t = \eta_v \cdot \eta_{mh} \))
Further information

Additional versions

- General operating manual for the assembly, initial operation and maintenance of hydraulic components and systems: B 5488
- Variable displacement axial piston pump type V30D: D 7960
- Variable displacement axial piston pump type V30E: D 7960 E
- Fixed displacement axial piston pump type K60N: D 7960 K
- Axial piston motors type M60N: D 7960 M
- Proportional directional spool valve, type PSL and PSV size 2: D 7700-2
- Proportional directional spool valve, type PSL, PSM and PSV size 3: D 7700-3
- Proportional directional spool valve, type PSL, PSM and PSV size 5: D 7700-5
- Proportional directional spool valve type PSLF, PSVF and SLF size 3: D 7700-3F
- Proportional directional spool valve type PSLF, PSVF and SLF size 5: D 7700-5F
- Proportional directional spool valve type EDL: D 8086
- Proportional directional spool valve banks type PSLF and PSVF size 7: D 7700-7F
- Load-holding valve type CLHV-C: D 7918-VI-C
- Load-holding valve type CLHV: D 7918-VI-PIB
- Load-holding valve type LHDV: D 7770
- Proportional amplifier type EV1M3: D 7831/2
- Proportional amplifier type EV1D: D 7831 D
- Proportional amplifier type EV2S: D 7818/1