# Stromteilventil (Mengenteiler) Typ TQ

# Produkt-Dokumentation



Betriebsdruck  $p_{max}$ : Volumenstrom  $Q_{CN max}$ : 350 bar 200 l/min







© by HAWE Hydraulik SE.

Weitergabe sowie Vervielfältigung dieses Dokuments, Verwendung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet.

Zuwiderhandlungen verpflichten zu Schadenersatz.

Alle Rechte für den Fall der Patent- oder Gebrauchsmustereintragungen vorbehalten.

Handelsnamen, Produktmarken und Warenzeichen werden nicht besonders gekennzeichnet. Insbesondere wenn es sich um eingetragene und geschützte Namen sowie Warenzeichen handelt, unterliegt der Gebrauch gesetzlichen Bestimmungen.

HAWE Hydraulik erkennt diese gesetzlichen Bestimmungen in jedem Fall an.

Druckdatum / Dokument generiert am: 01.03.2021



# Inhaltsverzeichnis

| 1                             | Übersicht Stromteilventil Typ TQ                                                                                                                                | 4              |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 2<br>2.1<br>2.2<br>2.3        | Lieferbare Ausführungen, Hauptdaten.Ventile mit gleichem Teilverhältnis.Ventile für ungleiche Teilverhältnisse.Ventile nur zum Teilen $C \rightarrow A$ , $B$ . | 5<br>7         |
| <b>3</b><br>3.1               | Kenngrößen                                                                                                                                                      |                |
| <b>4 4.1 4.2</b>              | Abmessungen.  Ausführung für Rohrleitungsanschluss.  Ausführung für Plattenaufbau.                                                                              | 13             |
| 5<br>5.1<br>5.2<br>5.3<br>5.4 | Montage-, Betriebs- und Wartungshinweise.  Bestimmungsgemäße Verwendung.  Montagehinweise.  Betriebshinweise.  Wartungshinweise.                                | 15<br>15<br>16 |
| 6<br>6.1<br>6.2               | Sonstige Informationen.  Aufbau und Funktinsweise.  Schaltungsbeispiel.                                                                                         | 17             |



# Übersicht Stromteilventil Typ TQ

Stromteilventile, auch Mengenteiler genannt, gehören zu den Stromventilen. Sie teilen oder summieren einen Gesamtvolumenstrom gleichmäßig oder in einem festen Teilungsverhältnis. Die Verbraucherdrücke spielen dabei keine Rolle. Das Stromteilventil Typ TQ ist durch seinen einfachen konstruktiven Aufbau eine günstige Lösung für einfache Teilungsaufgaben, z.B. wenn zwei von einer Pumpe versorgte und beliebig belastete Hydroverbraucher ohne gegenseitige Beeinflussung gleichzeitig bewegt werden sollen.

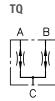
Anwendungsbereiche finden sich in der Mobilhydraulik und in der Industriehydraulik.

Stromteilventil Typ TQ

# **Eigenschaften und Vorteile:**

• gute Teilgenauigkeit

# **Anwendungsgebiete:**


- Lenksysteme
- Gleichlaufzylinder



# Lieferbare Ausführungen, Hauptdaten

# 2.1 Ventile mit gleichem Teilverhältnis

Schaltsymbol:



TQ .P



**Bestellbeispiel:** 

TQ 32 - A 3

Volumenstrom "Tabelle 2"

Grundtyp und Baugröße "Tabelle 1"

Tabelle 1 Grundtyp und Baugröße

| Тур                        | Volumenstrom             | Druck                  | Anschluss (ISO 228-1 bzw. JIS B2351-1) |       |  |  |  |  |  |  |
|----------------------------|--------------------------|------------------------|----------------------------------------|-------|--|--|--|--|--|--|
|                            | Q <sub>max</sub> (l/min) | p <sub>max</sub> (bar) | A, B                                   | С     |  |  |  |  |  |  |
| Rohrleitungsanschluss      |                          |                        |                                        |       |  |  |  |  |  |  |
| TQ 21 - A<br>TQ 21 JIS - A | 7,5 70                   |                        | G 1/4                                  | G 3/8 |  |  |  |  |  |  |
| TQ 22 - A<br>TQ 22 JIS - A | 7,5 70                   |                        | G 3/8                                  | G 3/8 |  |  |  |  |  |  |
| TQ 32 - A<br>TQ 32 JIS - A | 7,5 70                   | 350                    | G 3/8                                  | G 1/2 |  |  |  |  |  |  |
| TQ 33 - A<br>TQ 33 JIS - A | 7,5 70                   |                        | G 1/2                                  | G 1/2 |  |  |  |  |  |  |
| TQ 43 - A                  | 80 120                   |                        | G 1/2                                  | G 3/4 |  |  |  |  |  |  |
| TQ 54 - A                  | 140 200                  |                        | G 3/4                                  | G 1   |  |  |  |  |  |  |
| Plattenaufbau              |                          |                        |                                        |       |  |  |  |  |  |  |
| TQ 3 P - A                 | 7,5 70                   |                        | Ø8                                     | Ø10,5 |  |  |  |  |  |  |
| TQ 4 P - A                 | 80 120                   | 350                    | Ø13                                    | Ø16   |  |  |  |  |  |  |
| TQ 5 P - A                 | 140 200                  |                        | Ø15                                    | Ø20   |  |  |  |  |  |  |



# Tabelle 2 Volumenstrom

| Kennzeichen | lieferbar für Grundtyp                                 | volumenstrom                | Endlagenausgleich ca. (l/min) |       |  |  |
|-------------|--------------------------------------------------------|-----------------------------|-------------------------------|-------|--|--|
|             |                                                        | Q <sub>CN</sub> ca. (l/min) | A B                           | A D B |  |  |
| 0,78        |                                                        | 3,5                         | 0,2                           | 0,1   |  |  |
| 1,1         |                                                        | 7,5                         | 1,6                           | 1     |  |  |
| 1,6         | TQ 21 A<br>TQ 22 A<br>TQ 32 A<br>TQ 33 A<br>TQ 3 P - A | 15                          | 1,6                           | 1     |  |  |
| 2,3         |                                                        | 30                          | 2,5                           | 1,5   |  |  |
| 3           |                                                        | 45                          | 4                             | 1,7   |  |  |
| 3,5         |                                                        | 60                          | 5                             | 2     |  |  |
| 4           |                                                        | 70                          | 6,5                           | 3     |  |  |
| 4           | TQ 43 - A                                              | 80                          | 6,5                           | 3     |  |  |
| 5           | TQ 4P - A                                              | 120                         | 9                             | 5     |  |  |
| 5,5         | TQ 54 - A                                              | 140                         | 12                            | 6     |  |  |
| 6,8         | TQ 5 P - A                                             | 200                         | 15                            | 7     |  |  |

# **1** HINWEIS

- Nenn-Gesamtvolumenstrom Q<sub>CN</sub>: Richtwert für den zul. Eingangs-Volumenstrom am Anschluss C,  $\Delta$  p C  $\leftrightarrow$  A und  $\Delta$  p C  $\leftrightarrow$  B ca. 30 bar, siehe  $\Delta$  p-Q-Kennlinien.
- TQ 21 . A 4 (Q<sub>CN</sub> ≈ 70 l/min): nur für Einsatzfälle, in denen ein größerer Teilungsfehler nicht stört (ca. ± 8 ... 10%).
- Endlagenausgleich: wenn bei Hydrozylindern der Vorauseilende am Endanschlag zum Stillstand kommt, folgt der andere entsprechend dem angegebenen Ausgleichstrom (Richtwert) nach, Hinweis in Kapitel 6.2, "Schaltungsbeispiel" beachten.



# 2.2 Ventile für ungleiche Teilverhältnisse

# **Bestellbeispiel:**

# Tabelle 3 Lieferbare Ausführungen

| Тур    | Volumenstro<br>Verhältnis | om/     | Тур    | Volumenstrom/<br>Verhältnis | Тур    | Volumenstrom/<br>Verhältnis |  |
|--------|---------------------------|---------|--------|-----------------------------|--------|-----------------------------|--|
| TQ 2 A | 1,1/2                     | 3/3     | TQ 4 A | 4/1,5                       | TQ 5 A | 5,5/2                       |  |
| TQ 3 A | 1,6/2                     | 3,5/2   |        | 4/2                         |        | 6,8/2                       |  |
|        | 2,3/1,4                   | 3,5/3   |        | 4/3                         |        | 6,8/3                       |  |
|        | 2,3/2                     | 3,5/4   |        | 5/2                         |        |                             |  |
|        | 2,3/3                     | 4/1,4 * |        | 5/3                         |        |                             |  |
|        | 2,3/4                     | 4/2 *   |        | 5/5                         |        |                             |  |
|        | 3/1,5                     | 4/3 *   |        | 5/1,5                       |        |                             |  |
|        | 3/2                       | 4/4 *   |        |                             |        |                             |  |

# **1** HINWEIS

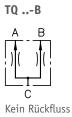
- Q<sub>CN</sub>: Nenn-Gesamtvolumenstrom entsprechend Kennzeichen Volumenstrom, siehe "Tabelle 2"
- Anschluss A: max. zulässiger Teilvolumenstrom ist  $Q_{A \text{ max}} = 0.5 Q_{CN}$ .
- Anschluss B: kleinerer Teilstrom
- Anschluss C: der zulässige Eingangsvolumenstrom Q<sub>C zul</sub> ist kleiner als Q<sub>CN</sub>
   (z = Verhältnis der Verbraucher-Volumenströme, siehe Tabelle 3)
- Berechnung:

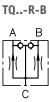
$$Q_{\text{Czul}} = Q_{\text{A max}} + Q_{\text{B max}} \text{ oder } Q_{Czul} = 0.5 Q_{CN} \left(1 + \frac{1}{Z}\right)$$

Beispiel:

$$z = 2$$
:  $Q_B = \frac{1}{2} Q_A$ 

$$z = 3$$
:  $Q_B = \frac{1}{3} Q_A$ 


$$z = 4$$
:  $Q_B = \frac{1}{4} Q_A$ 


\* TQ 21 . - A 4 (Q<sub>CN</sub> ≈ 70 l/min): nur für Einsatzfälle, in denen ein größerer Teilungsfehler nicht stört (ca. ± 8 ... 10%).



# 2.3 Ventile nur zum Teilen $C \to A$ , B

Schaltsymbol:





# **Bestellbeispiel:**



Grundtyp und Baugröße "Tabelle 4"

# Tabelle 4 Grundtyp und Baugröße

| Тур                 | Anschluss (ISO | 228-1) |       | Bemerkung                                                                                                                                                                                                                                               |
|---------------------|----------------|--------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | Α              | В      | С     |                                                                                                                                                                                                                                                         |
| Rohrleitungsanschlu | SS             |        |       |                                                                                                                                                                                                                                                         |
| TQ 21-B             | G 1/4 G 1/4    |        | G 3/8 | Ventile mit einfachem Mono-Regelkolben, nur für Durchflussrichtung                                                                                                                                                                                      |
| TQ 22-B             | G 3/8          | G 3/8  | G 3/8 | C → A, B zum Teilen.  Rückfluss in Gegenrichtung nicht möglich.                                                                                                                                                                                         |
| TQ 32-B             | G 3/8          | G 3/8  | G 1/2 |                                                                                                                                                                                                                                                         |
| TQ 33-B             | G 1/2          | G 1/2  | G 1/2 |                                                                                                                                                                                                                                                         |
| TQ 43-B             | G 1/2          | G 1/2  | G 3/4 |                                                                                                                                                                                                                                                         |
| TQ 54-B             | G 3/4          | G 3/4  | G 1   |                                                                                                                                                                                                                                                         |
| TQ 32 R-B           | G 3/8          | G 3/8  | G 1/2 | Eingebaute Umgehungs-Rückschlagventile für freien, ungeregelten Rückfluss. Anwendungsbeispiel: Greiferschaufeln oder -gabeln, die gewichtsbedingt ungebremst schnell öffnen und gegen Eigenanschlag fahren sollen, um anhaftendes Füllgut loszuprellen. |



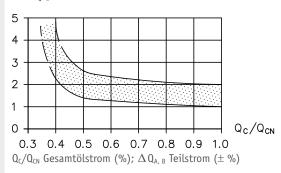
# Kenngrößen

# 3.1 Allgemeine Daten

| Benennung       | Stromteilventil                                                                                                                                                                                                                                                                                                                                              |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bauart          | Kolben-Längsschieber                                                                                                                                                                                                                                                                                                                                         |
| Bauform         | Plattenaufbau, Rohrleitungsanschluss                                                                                                                                                                                                                                                                                                                         |
| Material        | Stahl; Ventilgehäuse galvanisch verzinkt                                                                                                                                                                                                                                                                                                                     |
| Einbaulage      | beliebig                                                                                                                                                                                                                                                                                                                                                     |
| Druckmittel     | Hydrauliköl: entsprechend DIN 51524 Teil 1 bis 3;<br>ISO VG 10 bis 68 nach DIN ISO 3448<br>Viskositätsbereich: min. ca. 4; max. ca. 1500 mm²/s<br>Optimaler Betrieb: ca. 10 500 mm²/s<br>Auch geeignet für biologisch abbaubare Druckmedien des Typs HEPG (Polyalkylenglykol)<br>und HEES (synthetische Ester) bei Betriebstemperaturen bis ca. +70°C.       |
| Reinheitsklasse | ISO 4406<br>21/18/1519/17/13                                                                                                                                                                                                                                                                                                                                 |
| Temperaturen    | Umgebung: ca40 +80°C, Öl: -25 +80°C, auf Viskositätsbereich achten. Starttemperatur: bis -40°C zulässig (Startviskositäten beachten!), wenn die Beharrungstemperatur im anschließenden Betrieb um wenigstens 20K höher liegt. Biologisch abbaubare Druckmedien: Herstellerangaben beachten. Mit Rücksicht auf die Dichtungsverträglichkeit nicht über +70°C. |



### Teilgenauigkeit


ist abhängig von

■ Gesamtölstrom Q<sub>C</sub>:

Der Gesamtölstrom  $Q_c$  soll zwischen 50...100% von  $Q_{CN}$  liegen. Unterhalb 50% von  $Q_{CN}$  nimmt die Teilgenauigkeit ab. Hier ist ein Gerät mit dem nächst kleineren Volumenstrom-Kennzeichen zu wählen.

• Druckunterschied zwischen den Verbraucheranschlüssen A und B: Bei gleichen oder geringfügig unterschiedlichen Drücken (≤ 20 bar) liegt der Teilungsfehler bei ca. ± 1... 2%. Bei größeren Druckdifferenzen nimmt der Teilungsfehler zu und liegt bei 100 bar Unterschied für die Volumenstrom-Kennzeichen A 0,78 ... 2,3 bei ca. ± 2 ... 2,5% und kann bei den größeren Kennzeichen auf ± 3...5% ansteigen, bei A 6,8 auf ca. ± 5...7%.

#### $\Delta Q_{A, B}$



Teilungsfehler:

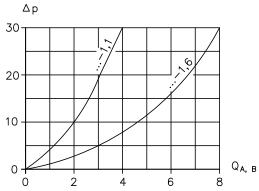
$$Q_{\mathsf{A},B} = f\left(\frac{Q_C}{Q_{CN}}\right) in \ \% \ von \ Q_{\mathsf{A},B} = \frac{1}{2} \ Q_C$$

bei gleichen Lastdrücken oder geringen Druckunterschieden zwischen den Anschlüssen A und B.

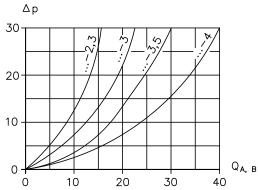
# **Druck und Volumenstrom**

| Betriebsdruck | $p_{\text{max}} = 350 \text{ bar}$                                  |
|---------------|---------------------------------------------------------------------|
| Volumenstrom  | Siehe Kapitel 2.1, "Ventile mit gleichem Teilverhältnis", Tabelle 2 |

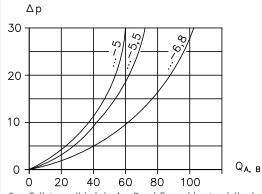
10/20 D 7381 - 09-2020-1.2 © HAWE Hydraulik SE




# Kennlinien


# Ölviskosität ca. 60 mm²/s

 $\Delta$  p-Q-Kennlinien


TQ..-A.. TQ..-B..



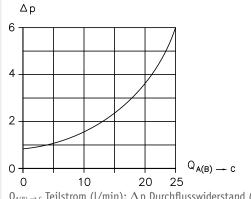
 ${\rm Q}_{\rm A,\,B}$  Teilstrom (l/min);  $\Delta\,{\rm p}$  Durchflusswiderstand (bar)



 $Q_{A, B}$  Teilstrom (l/min);  $\Delta p$  Durchflusswiderstand (bar)



 $Q_{A, B}$  Teilstrom (l/min);  $\Delta p$  Durchflusswiderstand (bar)




# Kennlinien

# Ölviskosität ca. 60 mm²/s

 $\Delta$  p-Q-Kennlinien für Rückfluss

# TQ 32 R-B



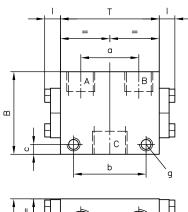
 $\mathsf{Q}_{\mathsf{A}(\mathsf{B})\,\to\,\mathsf{C}}$  Teilstrom (l/min);  $\Delta\,\mathsf{p}$  Durchflusswiderstand (bar)

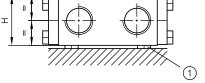
# Masse

# Тур

| TQ 21., TQ 22. | = 0,6 kg  |
|----------------|-----------|
| TQ 32., TQ 33. | = 0,6 kg  |
| TQ 43          | = 1,5 kg  |
| TQ 54          | = 3,0 kg  |
| TQ 3P-A        | = 0.7  kg |
| TQ 4P-A        | = 1,6 kg  |
| TQ 5P-A        | = 3,1 kg  |

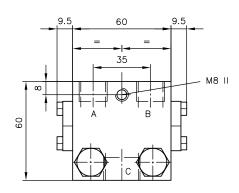
12/20 D 7381 - 09-2020-1.2 © HAWE Hydraulik SE

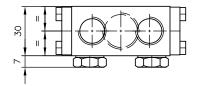




# **Abmessungen**

Alle Maße in mm, Änderungen vorbehalten.

# 4.1 Ausführung für Rohrleitungsanschluss


TQ 21 . - A ... TQ 54 . - A TQ 21 . - B ... TQ 54 . - B






1 siehe Hinweis

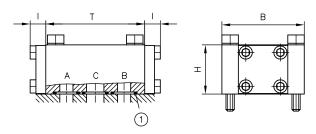
TQ 32 R - B ..







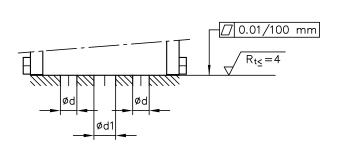
#### HINWEIS


Gehäuse auf der Befestigungsebene nicht verspannen; Unterlegscheiben als Distanzstücke gegen Unebenheiten dazwischenlegen

| Тур       | Н  | В  | T    | a    | b  | С  | ι   | g                                             |     |  |
|-----------|----|----|------|------|----|----|-----|-----------------------------------------------|-----|--|
| TQ 21     |    |    |      | 34,8 |    |    |     | M8, durchgehend                               |     |  |
| TQ 21 JIS |    |    |      | 31   | 44 | 6  |     |                                               |     |  |
| TQ 22     | 30 | 50 | 59,6 | 34,8 |    |    | 9,5 |                                               |     |  |
| TQ 22 JIS |    |    |      | 31   |    |    |     |                                               |     |  |
| TQ 32     |    |    |      | 34,8 |    |    |     |                                               |     |  |
| TQ 32 JIS |    |    | 66   | 35   |    |    |     |                                               |     |  |
| TQ 33     | 30 | 60 |      | 66   | 66 | 36 | 44  | 4                                             | 9,5 |  |
| TQ 33 JIS |    |    |      | 35   |    |    |     |                                               |     |  |
| TQ 43     | 40 | 60 | 80   | 50   | 60 | 6  | 15  | M8, 10 tief                                   |     |  |
| TQ 54     | 50 | 80 | 104  | 60   | 80 | 10 | 15  | vorne / hinten,<br>Kernbohrung<br>durchgehend |     |  |



# 4.2 Ausführung für Plattenaufbau


TQ 3P-A TQ 4P-A TQ 5P-A



1 O-Ring NBR 90 Shore

# Bohrbild der Grundplatte





| Тур     | Н  | В  | T   | a    | b  | С  | $\emptyset$ d | Ød1  | l   | g            | 0-Ring     |
|---------|----|----|-----|------|----|----|---------------|------|-----|--------------|------------|
| TQ 3P-A | 30 | 50 | 60  | 17,5 | 48 | 40 | 8             | 10,5 | 9,5 | M6, 10 tief  | 12,42x1,78 |
| TQ 4P-A | 40 | 60 | 80  | 26   | 64 | 47 | 13            | 16   | 15  | M8, 10 tief  | 18,72x2,62 |
| TQ 5P-A | 50 | 80 | 104 | 31   | 80 | 63 | 15            | 20   | 15  | M10, 10 tief | 31,42x2,62 |



# Montage-, Betriebs- und Wartungshinweise

# 5.1 Bestimmungsgemäße Verwendung

Dieses Ventil ist ausschließlich für hydraulische Anwendungen bestimmt (Fluidtechnik).

Der Anwender muss die Sicherheitsvorkehrungen sowie die Warnhinweise in dieser Dokumentation beachten.

# Unbedingte Voraussetzungen, damit das Produkt einwandfrei und gefahrlos funktioniert:

- Alle Informationen dieser Dokumentation beachten. Das gilt insbesondere für alle Sicherheitsvorkehrungen und Warnhinweise.
- Das Produkt nur durch qualifiziertes Fachpersonal montieren und in Betrieb nehmen lassen.
- Das Produkt nur innerhalb der angegebenen technischen Parameter betreiben. Die technischen Parameter werden in dieser Dokumentation ausführlich dargestellt.
- Bei Verwendung einer Baugruppe müssen alle Komponenten für die Betriebsbedingungen geeignet sein.
- Zusätzlich immer die Betriebsanleitung der Komponenten, Baugruppen und der spezifischen Gesamtanlage beachten.

Wenn das Produkt nicht mehr gefahrlos betrieben werden kann:

- 1. Produkt außer Betrieb setzen und entsprechend kennzeichnen.
- ✓ Es ist dann nicht erlaubt, das Produkt weiter zu verwenden oder zu betreiben.

# 5.2 Montagehinweise

Das Produkt nur mit marktüblichen und konformen Verbindungselementen (Verschraubungen, Schläuche, Rohre, Halterungen...) in die Gesamtanlage einbauen.

Das Produkt muss (insbesondere in Kombination mit Druckspeichern) vor der Demontage vorschriftsmäßig außer Betrieb genommen werden.



# **↑** GEFAHR

Plötzliche Bewegung der hydraulischen Antriebe bei falscher Demontage.

Schwere Verletzungen oder Tod.

- Hydrauliksystem drucklos machen.
- Wartungsvorbereitende Sicherheitsmaßnahmen durchführen.



# 5.3 Betriebshinweise

# Produktkonfiguration sowie Druck und Volumenstrom beachten

Die Aussagen und technische Parameter dieser Dokumentation müssen unbedingt beachtet werden. Zusätzlich immer die Anleitung der gesamten technischen Anlage befolgen.



# **1** HINWEIS

- Dokumentation vor dem Gebrauch aufmerksam lesen.
- Dokumentation dem Bedien- und Wartungspersonal jederzeit zugänglich machen.
- Dokumentation bei jeder Ergänzung oder Aktualisierung auf den neuesten Stand bringen.



#### VORSICHT

# Unerwartete Bewegungsabläufe in der Maschine durch falsche Volumenstromeinstellung.

Leichte Verletzungen

- Auf unerwartete, schnelle Bewegungen gefasst sein. Beim Ändern der Volumenstromeinstellungen bewegen sich Verbraucher schneller oder langsamer.
- Volumenstromeinstellungen oder Volumenstromveränderungen nur bei gleichzeitiger Manometerkontrolle vornehmen.

# Reinheit und Filtern der Druckflüssigkeit

Verschmutzungen im Feinbereich können die Funktion der Hydraulikkomponente beträchtlich stören. Durch Verschmutzung können irreparable Schäden entstehen.

### Mögliche Verschmutzungen im Feinbereich sind:

- Metallspäne
- Gummipartikel von Schläuchen und Dichtungen
- Schmutz durch Montage und Wartung
- Mechanischer Abrieb
- Chemische Alterung der Druckflüssigkeit



## HINWEIS

Neue Druckflüssigkeit vom Hersteller hat nicht unbedingt die erforderliche Reinheit. Beim Einfüllen von Druckflüssigkeit ist diese zu filtern.

Für den reibungslosen Betrieb auf die Reinheitsklasse der Druckflüssigkeit achten. (siehe auch Reinheitsklasse im Kapitel 3, "Kenngrößen")

Mitgeltendes Dokument: <u>D 5488/1</u> Ölempfehlung

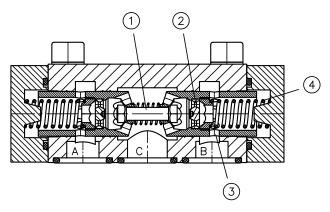
# 5.4 Wartungshinweise

Regelmäßig, mindestens jedoch 1x jährlich prüfen, ob die hydraulischen Anschlüsse beschädigt sind (Sichtkontrolle). Falls externe Leckagen auftreten, das System außer Betrieb nehmen und instandsetzen.

In regelmäßigen Abständen, mindestens jedoch 1x jährlich, die Geräteoberfläche reinigen (Staubablagerungen und Schmutz).



# **Sonstige Informationen**


# 6.1 Aufbau und Funktinsweise

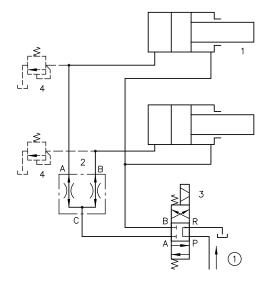
Das Stromteilventil besteht neben dem Gehäuse aus zwei gekoppelten Reglerkolben 1. Über Zentrierfedern 4 werden die Reglerkolben in der Mittelstellung (Ruhestellung) gehalten.

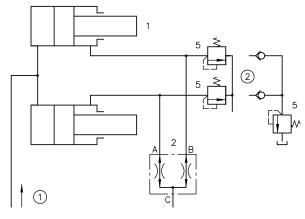
In den Reglerkolben sind eine feste Blende 2 und eine variable Drosselstelle 3 integriert.

Bei einem Volumenstrom von C nach A und B entsteht ein Druckgefälle, die die Reglerkolben in Regelstellung bringen (Stromregelfunktion).

Durch die Kopplung der beiden Reglerkolben werden Volumenströme an A und B entsprechend dem Teilungsverhältnis konstant gehalten, auch wenn bei A und B unterschiedliche Lastdrücke vorhanden sind.







- Reglerkolben, gekoppelt, gehärtet und geschliffen
- 2 Rlanda
- 3 veränderlicher Querschnitt (variable Drosselstelle)
- 4 Zentrierfedern und Reglerfedern



# 6.2 Schaltungsbeispiel

# Doppeltwirkende Verbraucher





- 1 von der Pumpe
- 2 oder

1 von der Pumpe

# 1 Doppeltwirkender Hydrozylinder

z. B. nach <u>D 2055/1</u>

# 2 Stromteilventil Typ TQ

### 3 Wegeschieber

Bild links: Beim Ausfahren der Zylinder (Teilen) ergibt sich ein Durchflusswiderstand am Stromteilventil für  $Q_A = Q_B = 0.5 \ Q_C$  (= 0.5  $Q_{Pumpe}$ ) gemäß der  $\Delta$  p-Q-Kennlinie.

Beim Einfahren (Vereinigen) sind die Teilströme  $Q_A = Q_B$  im Flächenverhältnis der Zylinder größer, der zugehörige Durchflusswiderstand ist dabei für die Pumpe ebenfalls im Flächenverhältnis größer.

In Grenzfällen mit  $Q_{Pumpe}$  im Bereich  $Q_{C max}$  kann deshalb der Anschluss des Stromteilventils an die Stangenseite der Zylinder günstiger sein (siehe 5)

# 4 Druckbegrenzungsventile

Bei Anordnung des Stromteilventils auf der Kolbenseite:

Druckbegrenzungsventile sind dann anzuordnen, wenn der Endlagenausgleich (beim Ausfahren) des nacheilenden Zylinders ohne Geschwindigkeitsbegrenzung erfolgen soll.

Das dabei ansprechende Druckbegrenzungsventil des zuerst am Endanschlag angekommenen Zylinders simuliert für das Stromteilventil weiterhin den Druckflüssigkeitsbedarf trotz Kolbenstillstand.

(Druckeinstellung geringfügig niedriger als pumpenseitiges Druckbegrenzungsventil)

# 5 Druckbegrenzungsventile

Bei Anordnung des Stromteilventils auf der Stangenseite:

Druckbegrenzungsventile sind anzuordnen, um (beim Endlagenausgleich beim Ausfahren) Druckübersetzungen infolge der Flächendifferenz der Zylinder zu vermeiden.

(Druckeinstellung geringfügig niedriger als pumpenseitiges Druckbegrenzungsventil)



### Einfachwirkende, gewichtsbelastete Verbraucher (Hubeinrichtungen)



### von der Pumpe

#### Einfachwirkender Hydrozylinder 1

gewichtsbelastet

#### 2 Stromteilventil Typ TQ

#### Leckölfreie Wegesitzventile 3

z.B. <u>D 7765</u> oder <u>D 7300</u> oder gleichwertige Ausführungen zur Sperrung der Zylinderleitungen bei "Halt" in angehobener, beliebiger Zwischenstellung.

Wegesitzventile verhindern einen unkontrollierten Volumenaustausch über das Stromteilventil vom höher zum niedriger belasteten Zylinder und damit ein Einfahren des einen und Ausfahren des anderen.

Wird stets gegen Endanschlag gefahren ohne Zwischenhalt, dann sind die Wegesitzventile nicht erforderlich.

#### Hubsenkventil Typ HSV 21 4

Siehe D 7032

Die Senkgeschwindigkeit mittels der Drossel "Dr" einstellen.



# HINWEIS

#### Hohe Senkgeschwindigkeiten vermeiden!

Beim Absenken der Lasten (Vereinigen der Teilströme) herrscht am Anschluss C - wegen des zum Tank geöffneten Wegeventils nur ein geringer Rücklaufwiderstand.

Die Regelblende auf der höher belasteten Verbraucherseite (im Bild bei A) gleicht zwar den Druckunterschied gegenüber dem niedriger belasteten Verbraucher aus, aber es würden sich diejenigen Teilströme  $Q_A = Q_B$  einstellen, die gemäß  $\Delta$  p-Q-Kennlinie in "Kenngrößen" sich für  $\Delta p$  = Lastdruck des niedriger belasteten Zylinders ergäben. Um zu hohe Senkgeschwindigkeiten zu vermeiden, muss der zurückfließende Gesamtstrom durch ein geeignetes Stromventil auf Werte ≤ Q<sub>CN</sub> begrenzt werden.

Im Beispiel: Begrenzung durch die im Hubsenkventil vorhandene Drossel "Dr" oder durch ein Senkbremsventil (<u>D 6920</u>) oder ein anderes, gleichwertiges Gerät.



# **Weitere Informationen**

# Weitere Ausführungen

- Stromregelventil (Senkbremsventil) Typ SB und SQ: D 6920
- Stromregelventil Typ SJ: D 7395
- Stromregelventil Typ CSJ: D 7736
- Stromregler Typ SD, SF und SK: D 6233
- Proportional-Stromregelventil Typ SE und SEH: D 7557/1