Proportional pressure-limiting valve type NPMVP

Product documentation

Operating pressure p_{max} : Flow rate Q_{max} :

700 bar 16 lpm

© by HAWE Hydraulik SE.

The reproduction and distribution of this document, as well as the use and communication of its contents to others without explicit authorization, is prohibited.

Offenders will be held liable for the payment of damages.

All rights reserved in the event of patent or utility model applications.

Brand names, product names and trademarks are not specifically indicated. In particular with regard to registered and protected names and trademarks, usage is subject to legal provisions.

HAWE Hydraulik respects these legal provisions in all cases.

HAWE Hydraulik cannot provide individual guarantees that the stated circuits or procedures (including in part) are not subject to the intellectual property rights of third parties.

Printing date / document generated on: 2023-04-06

Table of Contents

1	Overview of proportional pressure-limiting valve type NPMVP	4
2	Available versions	5
2.1	Single valve, manifold mounting	5
2.1.1	Basic type and size	5
2.1.2	Proportional actuator	5
2.1.3	Solenoid voltage and connector	6
2.2	Version with connection block for pipe connection	7
2.2.1	Single connection block for pipe connection	7
3	Parameters	8
3.1	General data	8
3.2	Pressure and volumetric flow	8
3.3	Weight	8
3.4	Characteristic lines	9
3.5	Electrical data	.12
4	Dimensions	13
4 4.1	Dimensions. Single valve.	
•		.13
4.1	Single valve	.13 .15
4.1 4.2	Single valve	.13 .15 .16
4.1 4.2 4.3	Single valve	.13 .15 .16
4.1 4.2 4.3	Single valve Single connection block Solenoid versions Installation, operation and maintenance information	.13 .15 .16 17 .17
4.1 4.2 4.3 5 5.1	Single valve Single connection block Solenoid versions Installation, operation and maintenance information Intended use	.13 .15 .16 17 .17
4.1 4.2 4.3 5 5.1 5.2	Single valve Single connection block Solenoid versions Installation, operation and maintenance information Intended use Assembly information	.13 .15 .16 17 .17
4.1 4.2 4.3 5 5.1 5.2 5.3	Single valve Single connection block Solenoid versions Installation, operation and maintenance information Intended use Assembly information Operating instructions	.13 .15 .16 17 .17 .17
4.1 4.2 4.3 5 5.1 5.2 5.3 5.4	Single valve Single connection block. Solenoid versions. Installation, operation and maintenance information. Intended use. Assembly information. Operating instructions. Maintenance information.	.13 .15 .16 17 .17 .17 .17
4.1 4.2 4.3 5 5.1 5.2 5.3 5.4	Single connection block Solenoid versions. Installation, operation and maintenance information. Intended use. Assembly information. Operating instructions. Maintenance information. Other information.	.13 .15 .16 17 .17 .17 .18 .19 .20

Overview of proportional pressure-limiting valve type NPMVP

Proportional pressure-limiting valves are a type of pressure control valve. They remotely control the pressure in hydraulic systems continuously and electrically.

The pressure-limiting valve type NPMVP is a pilot-controlled valve in a spring-loaded ball version. The pressure can be set to up to 700 bar.

The proportional pressure-limiting valve type NPMVP is designed as a manifold mounting valve with flange pattern NG 6.

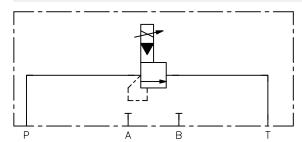
The proportional pressure-limiting valve is particularly suitable for maximum pressure limitation hydraulic systems.

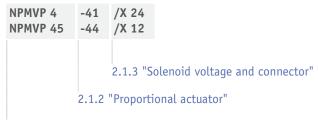
Features and advantages

- Operating pressures up to 700 bar
- Precise control over a wide control range
- Can be integrated into valve bank type BA and BNG

Intended applications

- General hydraulic systems
- Test benches


Proportional pressure-limiting valve type NPMVP


Available versions

2.1 Single valve, manifold mounting

Circuit symbol

Ordering examples

2.1.1 "Basic type and size"

2.1.1 Basic type and size

Main valve

Туре	Connection	Flow rate Q _{max} (lpm)
NPMVP 4	NG 6	16
NPMVP 45	NG 6	16

2.1.2 Proportional actuator

Coding	Proportionally controllable pressure range (bar) p _{min} to p _{max} *)			
	NPMVP 4	NPMVP 45		
-41	5 180	5 110		
-42	5 290	5 180		
-43	5 440	5 270		
-44	5 700	5 450		

^{*)} Pressure value p_{min} of below 5 bar can only be achieved under approx. (0.1 to 0.2) Q_{max}

2.1.3 Solenoid voltage and connector

Coding	Electrical connection	Nominal voltage	Protection class (IEC 60529)
X 12 X 24	Industry standard version B (11 mm contact gap) • X: without line connector	12 V DC 24 V DC	IP 65
G 12 G 24	• G: with line connector MSD6-209	12 V DC 24 V DC	
X 12 DIN X 24 DIN	EN 175 301-803 A • X: without line connector	12 V DC 24 V DC	
G 12 DIN G 24 DIN	G: with line connector MSD3-309L: with LED connector	• G: with line connector MSD3-309	
L 12 DIN L 24 DIN	• L5K: with cast-on cable 5 m long	12 V DC 24 V DC	
L5K 12 DIN L5K 24 DIN		12 V DC 24 V DC	
S 24	Bayonet coupling PA6 Schlemmer	24 V DC	
AMP 12 AMP 24	AMP Junior Timer 2-pole	12 V DC 24 V DC	
DT 12 DT 24	German (DT 04-2P)	12 V DC 24 V DC	IP 68

NOTICE

The specifications regarding the IP protection class apply for versions featuring a properly assembled male connector.

Connection pattern

G.., X..

G.. DIN, X..DIN, L..DIN

S..

AMP..

DT..

2.2 Version with connection block for pipe connection

Ordering example

NPMVP 4 -44/X 24 -3/8

2.2.1 "Single connection block for pipe connection"

2.1 "Single valve, manifold mounting"

2.2.1 Single connection block for pipe connection

Coding	Ports (ISO 228-1)
-1/4	G 1/4
-3/8	G 3/8

Parameters

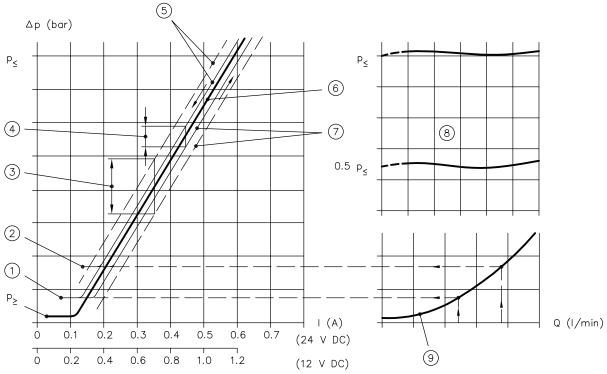
3.1 General data

Designation	Proportional pressure-limiting valve
Design	pilot-controlled ball seated valve
Model	Manifold mounting valve, valve for pipe installation
Material	Steel, nitrided actuator, electrogalvanised valve block
Installation position	Any
Ports/connections	 P = pump pressure, system pressure R = Reflux
Hydraulic fluid	Hydraulic fluid, according to DIN 51 524 Parts 1 to 3; ISO VG 10 to 68 according to DIN ISO 3448 Viscosity range: 4 - 1500 mm²/s Optimal operating range: approx. 10 - 500 mm²/s Also suitable for biologically degradable hydraulic fluids type HEPG (polyalkylene glycol) and HEES (synthetic ester) at operating temperatures up to approx. +70°C.
Cleanliness level	ISO 4406 20/17/1418/15/12
Temperatures	Environment: approx40 to +80 °C, hydraulic fluid: -25 to +80 °C, pay attention to the viscosity range. Start temperature: down to -40 °C is permissible (take account of the start viscosities!), as long as the steady-state temperature is at least 20 K higher during subsequent operation. Biologically degradable hydraulic fluids: note manufacturer specifications. With consideration for the seal compatibility, not above +70°C.

3.2 Pressure and volumetric flow

Operating pressure	 P: p_{max} according to pressure range R: p_{max} R ≤ 20 bar, see Chapter 3.4, "Characteristic lines"
Internal control oil consumption	Max. approx. 1.0 lpm

3.3 Weight

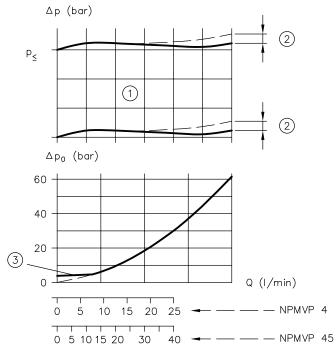

Туре	
NPMVP 4	= 1.1 kg
NMPVP 45	= 1.1 kg

3.4 Characteristic lines

Interaction between Δ p-I characteristic lines and Δ p-Q characteristic lines (reference values)

The lowest usable control point depends on the flow rate and can be estimated from the Δp_0 -Q characteristic line for I=0 A.

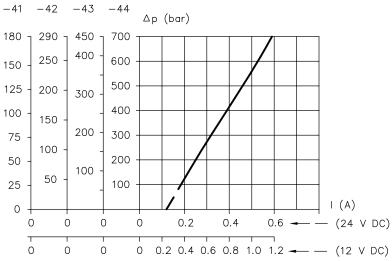
Q flow rate (lpm); control current I (A); Δp controlled pressure (bar)


- 1 Start of control for low flow rate
- 2 Start of control for high flow rate
- 3 Hysteresis without dither: approx. 30 bar (smooth supply)
- 4 Hysteresis with dither: approx. 2% of pmax
- 5 Control current, falling
- 6 Centre lines according to Δp -I characteristic lines (reference values)
- 7 Control current, rising
- 8 Δ p-Q characteristics for selected control position largely independent of flow rate
- 9 Flow resistance Δp_0 at I = 0 A (inherent resistance)

Δ p-Q characteristics (reference values)

Viscosity of the hydraulic fluid approx. 60 mm²/s

The pressure is largely independent of the flow rate.


Q flow rate (lpm); Δpo flow resistance (bar) at I=0 A; Δp controlled pressure (bar) according to the control current I (A)

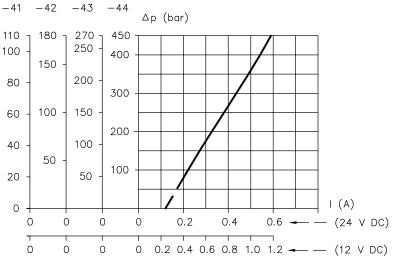
- 1 Δ p-Q characteristics for selected control position largely independent of flow rate
- 2 In the case of return pressure > 3 bar Δp = + 6 to 15 bar at Q_{max}
- 3 Minimum pre-load at the adjusting screw \triangle approx. 3 to 5 bar

Δ p-I characteristic curves (reference values)

NPMVP 4

I control current (A); Δp controlled pressure (bar)

NOTICE



For DIN and DT solenoids, an increase of around 4% in the start-up current should be expected.

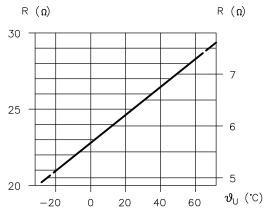
Type Average pressure change (bar/0.1 A)

NPMVP 4-41	approx. 38
NPMVP 4-42	approx. 62
NPMVP 4-43	approx. 96
NPMVP 4-44	approx. 150

NPMVP 45

I control current (A); Δp controlled pressure (bar)

Type Average pressure change (bar/0.1 A)

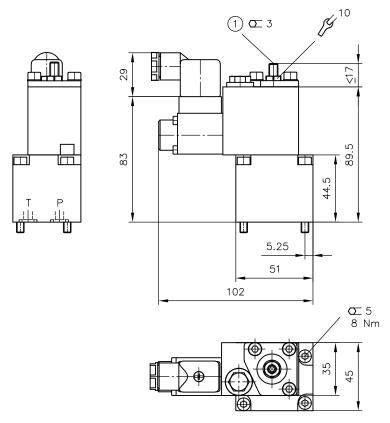

NPMVP 45-41	approx. 23
NPMVP 45-42	approx. 38
NPMVP 45-43	approx. 58
NPMVP 45-44	approx. 94

3.5 Electrical data

Coding	X 12 G 24	X 24 G 24	AMP 12 DT 12	AMP 24 DT 24 S 24	X 12 DIN G 12 DIN L 12 DIN L5K 12 DIN	X 24 DIN G 24 DIN L 24 DIN L5K 24 DIN
Nominal voltage U _N	12 V DC	24 V DC	12 V DC	24 V DC	12 V DC	12 V DC
Coil resistance R ₂₀ ±5%	6 Ω	24 Ω	6 Ω	24 Ω	6 Ω	24 Ω
Current, cold I ₂₀	2 A	1 A	2 A	1 A	2 A	1 A
Cooling power P ₂₀	24 W	24 W	24 W	24 W	24 W	24 W
Limit current I _G	1.26 A	0.63 A	1.26 A	0.63 A	1.26 A	0.63 A
Limit power PG	14.1 W	14.1 W	14.1 W	14.1 W	14.1 W	14.1 W
Relative duty cycle 100% duty cycle	Reference temperature $\vartheta_{11} = 50$ °C					
Required dither frequency	60 150 Hz					
Dither amplitude	20 40% of I ₂₀)				

Reference value for the cold resistance

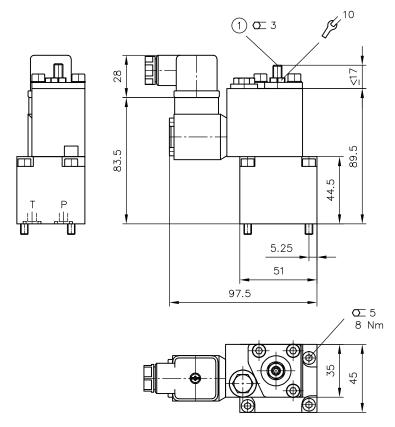
 ϑ_U ambient temperature (°C); R cold resistance (Ω) solenoid 24 V DC; R cold resistance (Ω) solenoid 12 V DC



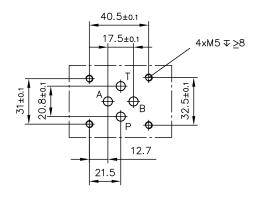
Dimensions

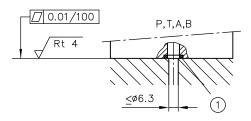
All dimensions in mm, subject to change.

4.1 Single valve


NPMVP

1 Adjusting screw for min. operating pressure pmin; the adjustment value depends on the flow rate

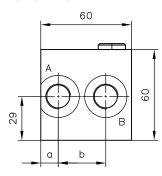


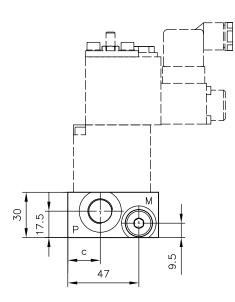

NPMVP-DIN

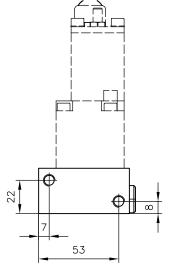
1 Adjusting screw for min. operating pressure pmin; the adjustment value depends on the flow rate

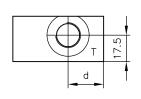
Hole pattern of the base plate

1 0-ring


Sealing of the ports with O-ring

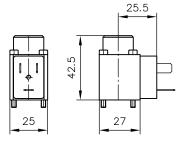

P, T, A, B 9.25x1.78 NBR 90 Sh



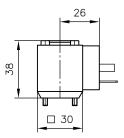

4.2 Single connection block

Coding -1/4, -3/8

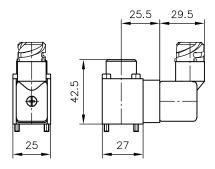
Coding	a	b	С	d
- 1/4	25	28	25	25
- 3/8	11,5	31,5	21,5	23,5

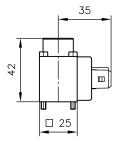

Coding Ports (ISO 228-1)

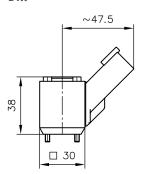
	P, T, A, B	М
- 1/4	G 1/4 (A, B not functional)	G 1/4 (sealed, not functional)
- 3/8	G 3/8 (A, B not functional)	



4.3 Solenoid versions


X.., G..


X..DIN, G..DIN, L..DIN


S..

AMP..

DT..

Installation, operation and maintenance information

Observe the document B 5488 "General operating instructions for assembly, commissioning, and maintenance."

5.1 Intended use

This product is intended exclusively for hydraulic applications (fluid technology).

The user must observe the safety measures and warnings in this document.

Essential requirements for the product to function correctly and safely:

- All information in this documentation must be observed. This applies in particular to all safety measures and warnings.
- The product must only be assembled and put into operation by specialist personnel.
- The product must only be operated within the specified technical parameters described in detail in this document.
- All components must be suitable for the operating conditions when using an assembly.
- The operating instructions for the components, assemblies and the specific complete system must also always be observed.

If the product can no longer be operated safely:

- 1. Remove the product from operation and mark it accordingly.
 - ✓ It is then not permitted to continue using or operating the product.

5.2 Assembly information

The product must only be installed in the complete system with standard and compliant connection components (screw fittings, hoses, pipes, fixtures etc.).

The product must be shut down correctly prior to disassembly (in particular in combination with hydraulic accumulators).

DANGER

Sudden movement of the hydraulic drives when disassembled incorrectly

Risk of serious injury or death

- ► Depressurise the hydraulic system.
- ► Perform safety measures in preparation for maintenance.

5.3 Operating instructions

Observe product configuration and pressure/flow rate.

The statements and technical parameters in this document must be strictly observed.

The instructions for the complete technical system must also always be followed.

NOTICE

- ► Read the documentation carefully before usage.
- The documentation must be accessible to the operating and maintenance staff at all times.
- ► Keep documentation up to date after every addition or update.

CAUTION

Overloading components due to incorrect pressure settings.

Risk of minor injury.

- Pay attention to the maximum operating pressure of the pump, valves and fittings.
- Always monitor the pressure gauge when setting and changing the pressure.

Purity and filtering of the hydraulic fluid

Fine contamination can significantly impair the function of the product. Contamination can cause irreparable damage.

Examples of fine contamination include:

- Swarf
- Rubber particles from hoses and seals
- Dirt due to assembly and maintenance
- Mechanical debris
- Chemical ageing of the hydraulic fluid

NOTICE

New hydraulic fluid from the manufacturer may not have the required purity. Damage to the product is possible.

- ► Filter new hydraulic fluid to a high quality when filling.
- ▶ Do not mix hydraulic fluids. Always use hydraulic fluid that is from the same manufacturer, of the same type, and with the same viscosity properties.

For smooth operation, pay attention to the cleanliness level of the hydraulic fluid (cleanliness level see Chapter 3, "Parameters").

Additionally applicable document: D 5488/1 Oil recommendations

5.4 Maintenance information

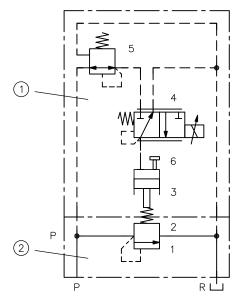
Check regularly (at least once a year) by visual inspection whether the hydraulic connections are damaged. If external leakages are found, shut down and repair the system.

Clean the surface of the device regularly (at least once a year) (dust deposits and dirt).

Other information

6.1 Basic design

The proportional pressure-limiting valves type NPMVP are pilot-controlled devices consisting of the main valve (ball seated valve 1, spring 2 and set piston 3) and the flange-mounted proportional control part (proportional pressure reducing valve 4 and pressure reducing valve preliminary stage 5).

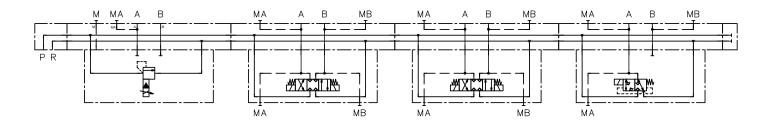

The system pressure tapped in the main valve, port P, is reduced in the preliminary stage 3 to a low, constant inlet pressure for the control valve 4. In the control valve 4 this pressure is converted into the electrical-proportional pilot pressure and directed to the set piston 3 which uses the spring 2 to load the valve 1 accordingly. This results in the current system pressure at inlet P. The various pressure ranges are determined by the size of the proportional pressure reducing valve 4 and the main valve.

Adjusting screw 6 for pre-tensioning the spring 2. As a result, the lower threshold value p_{min} of the proportionally controllable pressure range of approx. 7 bar can be raised. This means that, when below the corresponding control current, this increased pressure value remains constant, even in the case of a reduction to 0 A, apart from the flow-related deviation (see Chapter 3.4, "Characteristic lines").

A minimum pressure of 7 bar or more is required for proper functioning of the proportional pressure reducing valve type NPMVP 4.

Detailed circuit symbols

NPMVP



- 1 Proportional control valve
- 2 Main valve

6.2 Circuit example

BA 2 A5 -NPMVP 45-44/G 24/O -NBVP 16 G/M/3 -NBVP 16 G/M/3 -NBVP 16 Z/2/M/3-1-G 24

6.3 Accessories, spare and individual parts

To purchase spare parts, please see HAWE Hydraulik interactive contact map.

Line connector

Description	Туре	Material number
No additional function	MSD 6-209	6236 5004-00
With LED	SVS 3129720	6217 8027-00
Adapter to EN 175 301-803 A		6217 0238-00

Additional versions

- Proportional pressure-limiting valve type PMV and PMVP: D 7485/1
- Proportional pressure-limiting valve type PDV and PDM: D 7486
- Connection blocks for single-circuit pump types AB, AL: D 6905 AB
- Valve bank (nominal size 6) type BA: D 7788
- Valve bank type BNG: D 7788 BNG
- Proportional amplifier type EV1M3: D 7831/2
- Proportional amplifier type EV1D: D 7831 D
- Proportional amplifier type EV2S: D 7818/1

HAWE Hydraulik SE

D 7485 N 03-2023-1.1