Directional spool valve banks type HSR

electro-hydraulically actuated, for oil-hydraulic systems

Additional versions:

Individual directional spool valve type HSF for manifold mounting Individual directional spool valve type HSL for pipe connection D 7493 E D 7493 L

Order example acc. to photo HSR 3/B 31 C - G1 DGW - 2 - G 24 - 250

1. General

The type HSR directional spool valves are generally used for controlling the connected hydraulic consumers' direction of movement. Operation is indirect and electro-hydraulic via the built-on 3/2-way solenoid seated valves. The use of zero leakage seated valves actuated by wet armature solenoids as pilot valves and strong return springs for the valve spool ensure safe function even when being actuated for prolonged periods (no jamming because of micro contamination).

It is common knowledge that high volume consumers or long pipes have a fairly great accumulator effect, which always bears the risk of switching and decompression surges, due to the oil elasticity. This is particularly pronounced at higher operating pressure. In order to avoid such surges and to obtain soft switching, it is possible to adjust the switching speed of the valve via optional thread-type throttles to meet local requirements (switching time adjustment). This allows individual adjustment of the active period of the decompression grooves. This switching time adjustment becomes particularly effective and accurate, when the control pressure is at a low level. In addition, a pressure control valve, which is built into the connection block and limiting the control pressure is also optionally available. See detailed notes in section 2.

2. Types available, type coding

Ready to connect directional spool valve bank

For order coding of indiv. components, see sect. 5.2

Order example:

Table 1: Basic type and size

Coding	Flow Q _{max} (Ipm)	Pressure p _{max} (bar)	Tapped ports DIN ISO 228/1 (BSPP)	Control pressure (bar)	
HSR 3	80	400	G 1/2	Optimum 25 to 40; min.10, max. 160; 1) ²) ³)	
HSR 4	160		G 3/4		

Table 2a: Connection block

basic version for HSR 3(4)

Coding	Control oil supply	Control pressure limitation
A 1	Internally via gallery P ¹)	None
A 2	Externally via P1 ²)	None
A 3	Internally via gallery P ¹)	Internally to approx.
A 4	Externally via P1 ²)	reducing valve

Table 2b: Connection block for HSR 3..

with circulation and pressure limiting valve

Coding	Contro	l oil sup	ply	Control pressure limiting			
B 1	Interna	lly via g	allery P ¹)	None			
B 2	Extern	ally via F	P1 ²)	, None			
В 3	Interna	ılly via g	allery P ¹)	Internally to approx.			
B 4	Extern	ally via F	2) ²)	reducing valve			
Pressure	1	Tool a	adjustable				
valve	2	Manu	ble				
Proceuro ran	00	В	(30) 400				
(bar)	ge	С	(20) 315				
		E	(10) 160				

- 1) The simplest way of control oil supply is internal, when picked up from the main circuit (gallery P) e.g. when no separate control circuit is available. In the case of connection block A1 or B1... the control pressure is like the operating pressure in gallery P. This is suitable up to approx. 160 bar (max. permissible control pressure). Type A 3 or B3.. with control pressure limitation to approx. 35 bar via the built-in pressure reducing valve should be used for pressure over 160 bar, larger consumer volumes and long pipes. This provides softer, surge-free valve switching in general and good switching time adjustability via the throttle screws in the case of valves C1 to B1 (table 3).
- ²) External control oil inlet at P 1, when a separate own control circuit from the pump is available (delivery flow e.g. < 2 lpm). A 2 or B 2.. suitable, whenever the control circuit can be limited at a lower pressure, e.g. in the range of 15 ... 40 bar. A 4 or B4.. with control pressure limitation (via a built-in pressure reducing valve), is necessary when the control circuit is operated at higher pressure (> 160 bar), e.g. when it is also used to supply pressurized oil for other consumers.
- ³) Only for HSR 3: Valve EM 31S (D 7490/1) for relieving the pump gallery, e.g. for idle pump circulation when the valve spool is in neutral and the pump is not switched off. Note that the consumer side A (B) is also depressurized, in the case of spools W and B,. The minimum control pressure required for the valve is 10 bar. Travel from the neutral position starts at approx. 2 ... 3 bar. Very soft switching (consumer start) is therefore also achievable, when the valve is only switched with circulation pressure (Δp_L), i.e. the EM 31S is switched slightly delayed after the servo valve via a time-delay relay. This is only possible with a pump outlet flow of more than approx. 40 lpm (Δp_L > 3 bar).

Table 3: Directiona	al spool valve (valve sec	tion)							
Switching time adjustment	Coding (for notes and detailed symbols see sect. 5.1)								
Without ²)	C ¹)	G	D	E	w	В			
With ³)	C 1 ¹)	G 1	D 1	E 1	W 1	B 1			
Symbols									
¹) Differential valve for controlling double-action hydraulic cylinders with uneven piston surface areas (differential cylinders). Connect piston side to port A, rod side to port B. Differential cylinders should be always connected to the first valve directly after the connection block (table 2a or 2b), all other valves are added subsequently, see sect. 5.									
²) Normal, standa HSR 3 with circ	²) Normal, standard version. Usually sufficient for most applications and for operating pressure up to approx. 200 bar. See also notes on HSR 3 with circulation valve, table 2b.								
³) Advantageous (pressure reduce Retrofitting is p	for high operating pres cing valves, connection possible, see dimension	sure, long pipes, a blocks A 3, A 4, B 3 al drawings.	nd high volume cor 3, B 4, tables 2a a	nsumers. Optimum and 2b).	adjustability at low	control pressure			

Table 4: End plate

Coding	1		2	
Symbols, notes		Internal control oil return (R) Normally sufficient in con- junction with internal control oil supply (connection blocks A 1, A 3 or B1, B3)		External control oil return (X) Appropriate, when the control oil supply is also external via P1 and restricted to very low pressure and when higher return pressure (line resistance) or pressure surges are expected at port R.

Table 5: Nom. voltage for pilot and circulation valve

Solenoid actuated pilot valve type WN1H acc. to D 7470 A/1 and circulation valve type EM 31S acc. to D 7490/1. For additional information see respective pamphlets.							
Standard, with plug	Without plug	With featuring plug	Nom. voltage U _N	Nom. pov	ver P _N		
		LED's		WN1H	EM 31S		
G 12	X 12	L 12	12V DC				
G 24	X 24	L 24	24V DC				
G 98	X 98		98V DC	24.4 W	21 W		
G 205	X 205		205V DC				
WG 110			110V AC 50 / 60 Hz				
WG 230			230V AC				

D 7493 page 4

3.

Type and version	Direction Housing Valve sp minimum Built-on sect. 1 fc	al spool valve, ful zinc galvanized, g ool hardened, gr I leakage rate is a oilot valves: WN1 or advantages.	l steel desig giving a good ound, polish chieved by t H in accorda	n. I resistance to co ned and deburre he diamond-hone ance with D 7470	rrosion. d. An exactly circular ed and polish-deburrec A/1, seated ball valves	sealing gap with a I housing bore. s, leakage zero. See		
Installation position	Any							
Ports		HSR	3 HSR 4					
DIN ISO 228/1 (BSPP)	P = F A, B = C R = F	Pump inlet G 1/2 Consumer G 1/2 Return G 1/2	2 G 3/4 2 G 3/4 2 G 3/4	P1 = X = M1 =	External control valve in External control valve c Measuring port, contro	nlet G 1/4 outlet G 1/4 I circuit G 1/4		
Overlapping	Zero		·					
Switching times (guide line)	Without s (non thro ⁻	witching time adju ttled)	ustability	HSR 3: t HSR 4: t	_{on} = 3040 ms; t _{off} = _{on} = 5060 ms; t _{off} =	= 70100 ms = 110140 ms		
Mass (weight) approx. kg,,	Туре	Connection boc A 1 to A 4 E	ck, coding 3 1 to B 4	Directional spoo C(C1) to E(E1)	ol valve, coding B(B1) and W(W1)	End plate, coding 1 and 2		
	HSR 3 HSR 4	1.0 2.4	2.8 	2.5 4.2	2.0 3.7	0.7 4.2		
Flow Q _{max}	HSR 3 ≈	80 lpm; HSR 4 ≈	160 lpm; no	te total back pres	ssure (see below)			
Operating presure	P, A, and	B = 400 bar; R a	nd X = 12 ba	ar; M1 and P1 = $\frac{1}{2}$	160 bar			
Control volume	HSR 3 a	pprox. 1.8 cm ³ ; ł	HSR 4 appro	ox. 5 cm ³				
Temperatures	Viscosity 10500 (Polyalky Other pres	Viscosity range: min. approx. 4; max. approx. 1500 mm ² /sec. Optimal operation range: approx. 10500 mm ² /sec. Also suitable are biologically degradable pressure fluids of the type HEPG (Polyalkylenglycol) and HEES (synth. Ester) at operation temperature up to approx. $+70^{\circ}$ C. Other pressure media only if the NBR seals are compatible and if aforementioned viscosity range is kept to.						
Temperatures	Start tem as long a Biologica the comp	perature down to s the operation te al degradable preso patibility with seal	o -40°C are a emperature o ssure fluids: ing materials	allowable (Pay att luring subsequen Pay attention to do not exceed +	ention to the viscosity t running is at least 20 manufacturer's informa -70°C.	range during start! K (Kelvin) higher. ation. With regard to		
Pilot valves	Not over ambient t ply voltaç greater s Control p	60% duty cycle temperature is 80° ge. This gives a te afety under normaressure ≤ 160 ba	if the ambie °C. Heat ger mperature re al conditions ar (connectio	nt temperature is leration of the sol eserve as a balance and if the ambie	6 60°C and not over 35 enoid can be reduced to ce for increased ambien nt temperatures are ch B 1, B 2)	5% duty cycle if th by reducing the sup nt temperatures an anging.		
	U _{reduc.} = Control p U _{reduc.} =	0.75 U _{Nom} , perm ressure = 35 bar (0.50 U _{Nom} , perm	issible ambi connection l	ent temperature ≦ block A 3, A 4, B 3 ent temperature ≦	≤ 60°C 3, B 4) ≦ 80°C			
∆p-Q-curves	U _{reduc.} = Control p U _{reduc.} = 12	0.75 U _{Nom} , perm ressure = 35 bar (0.50 U _{Nom} , perm	issible ambi (connection l issible ambi	ent temperature ≦ block A 3, A 4, B 3 ent temperature ≦	≤ 60°C 3, B 4) ≦ 80°C			
Δp-Q-curves	U _{reduc.} = Control p U _{reduc.} = 12 10 eunsseud 6 (req) 4	0.75 U _{Nom} , perm ressure = 35 bar (0.50 U _{Nom} , perm HSR 3	issible ambie (connection l issible ambie	on block A 1, A2, ent temperature ≤ block A 3, A 4, B 3 ent temperature ≤	60°C 3, B 4) ≦ 80°C HSR 4			
Δp-Q-curves	Ureduc. = Control p Ureduc. = 12 10 8 6 4 2 7 0 2	0.75 U _{Nom} , perm ressure = 35 bar (0.50 U _{Nom} , perm HSR 3	issible ambi- (connection l issible ambi-	olock A 1, A2, ent temperature ≦ olock A 3, A 4, B 3 ent temperature ≦	≤ 60°C 3, B 4) ≤ 80°C HSR 4			
$\Delta p-Q-curves$	U _{reduc.} = Control p U _{reduc.} = 12 10 8 6 4 2 0 0 8 2 0 8 2 0 8	0.75 U _{Nom} , perm ressure = 35 bar (0.50 U _{Nom} , perm HSR 3	issible ambi- (connection l issible ambi-)	ent temperature ≤ block A 3, A 4, B 3 ent temperature ≤ ent temperature ≤ 60 70 80	≤ 60°C 3, B 4) ≤ 80°C HSR 4 20 40 60 80 100	160		
$\Delta p-Q-curves$	U _{reduc.} = Control p U _{reduc.} = 12 10 8 6 4 9 7 0 (pau) 8 8 0 8 0	0.75 U _{Nom} , perm ressure = 35 bar (0.50 U _{Nom} , perm HSR 3 10 20 3(20 4(issible ambie (connection l issible ambie 0 40 50 0 60	ent temperature ≤ block A 3, A 4, B 3 ent temperature ≤ ent temperature ≤ 60 70 80 80	≤ 60°C 3, B 4) ≤ 80°C HSR 4 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100			
$\Delta p-Q-curves$ $\square \qquad \square \qquad$	Ureduc. = Control p Ureduc. = 12 10 8 4 5 Control p 12 10 8 8 0 8 0 8 0 8 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0	0.75 U _{Nom} , perm ressure = 35 bar (0.50 U _{Nom} , perm HSR 3 10 20 30 20 40 10 20	issible ambinissible ambinistic ambinisti ambinistic ambinistic ambinistic ambinistic amb	and block A 1, A2, ent temperature \leq block A 3, A 4, B 3 ent temperature \leq ent temperature \leq 60 - 70 - 80 - 80 - 80 - 80 - 80 - 80 - 8	≤ 60°C 3, B 4) ≤ 80°C HSR 4 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100			
$\Delta p-Q-curves$ $\square \qquad \square \qquad$	U _{reduc.} = Control p U _{reduc.} = 12 10 8 6 9 8 8 8 0 8 0	0.75 U _{Nom} , perm ressure = 35 bar (0.50 U _{Nom} , perm HSR 3 10 20 3(20 4(10 20 20	issible ambinication of the second se	The block A 1, A2, ent temperature \leq block A 3, A 4, B 3 ent temperature \leq ent temperature \leq $60 \ 70 \ 80$ 80 $50 \ 60 \ 70$ 80	≤ 60°C 3, B 4) ≤ 80°C HSR 4 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100			
$\Delta p-Q-curves$ $ \begin{array}{c} & & \\ &$	Ureduc. = Control p Ureduc. = 12 10 8 4 2 0 B 0 B 0 B 0 B 0 B 0 B 0 0 0 0 0 0 0 0 0 0 0 0 0	0.75 U _{Nom} , perm ressure = 35 bar (0.50 U _{Nom} , perm HSR 3 10 20 30 20 40 10 20 10 20	issible ambinissible ambinistic ambinisti ambinist	A the first temperature solution A the first tem	60°C 3, B 4) 60°C HSR 4 HSR 4 20 40 60 80 100 20 40 80 100 20 80 100 20 80 1000 20 80 1000000000000000000000000000000			

In the case of 4/3-way directional spool valves, the total back pressure Δp_{total} , measured at inlet P, is made up of the proportion $\Delta p_{P \rightarrow A,B}$ on the onflow side and the proportion $\Delta p_{A,B \rightarrow R}$ on the outlet side. In the case of valve banks with several valves, the position of the valve in the block also has an influence. Note that in the case of consumers with an unequal surface ratio (diff. cylinder) the reflux Q_{out} , for which $\Delta p_{A,B \rightarrow R}$ is to be determined, can be lower or higher than Q_{in} depending on the direction of movement.

4. Dimensions of units

DT UNITS All dimensions are in mm, subject to change without notice!

4.1 Type HSR 3 with connection block A1 to A 4

33.75

33.75

Measuring port M1 for control pressure is blocked with tapped plug DIN 908 - G 1/4 A-St and seal ring A 14x18x1.5 DIN 7603-St

5. Appendix

5.1 Detailed illustration of the symbols from table 3, page 3

This detailed presentation is intended to make it easier to learn about the functional behavior and actual flow routes. When using differential valves C or C1, ensure that they are always placed at the first location behind the connection block A.. or B.. sect. 2.1, since only one return gallery is present internally for design and functional reasons. Two return galleries are necessary in each case for all other flow diagrams. These galleries are not joined before port R in the end plate. If the C valves were arranged in any other way, one of them would be blocked.

Illustrated example: HSR 3/A 3 - C G1 W1 B - 1 - G 24

5.2 Individual components for the directional valve bank For extension, replacement, own stocks etc.

	Connection block	Valve section (table 1, 3 and 5)	End plate (table 1	Plus four tension rods DIN 940, depending on number of valves				, S				
	(table 1 and 2)		and 4)		1	2	3	4	5	6	7	8
Size 3	HSR 3-A 1 to HSR 3-B 42E	HSR 3-C to HSR 3-B 1 G 12	HSR 3-1 or HSR 3-2	M6x	95	135	175	215	255	295	335	375
Size 4	HSR 4-A 1 to HSR 4-A 4	HSR 4 C WG 230 to HSR 4-B 1	HSR 4-1 or HSR 4-2	M10x	130	180	230	280	330	380	430	480

In order to avoid misunderstandings, the terms connection block, valve section or end plate must be placed ahead of the order designation HSR... Examples: Connection block HSR 3-B 42 E

Valve section HSR 3 G - G 24 End plate HSR 4-1