Proportional directional spool valve type PSL, PSM, and PSV according to the Load-Sensing principle
size 5 (valve bank design)

1. General

The directional spool valves types PSL and PSV serve to control both, the direction of movement and the load-independent, stepless velocity of the hydraulic consumers. In this way several consumers may be moved simultaneously, independently from each other at different velocity and pressure ratings, as long as the sum of the partial flows needed for this is within the total delivery supplied by the pump. The proportional spool valves of this pamphlet are designed as valve banks and consist of three functional groups:

Table of contents

1. General information .. 1
2. Type coding, overview 2
3. Available version, main data 4
 3.1 Connection blocks and end plates 4
 3.2 Add-on spool valves 10
4. Characteristic data ... 16
 4.1 General and hydraulic 16
 4.2 Curves .. 17
 4.3 Actuations ... 18
 4.4 Functional cut-off, prop. pressure limitation 22
 4.5 Other solenoid valves 22
5. Unit dimensions ... 23
 5.1 Connection blocks 23
 5.2 End plates ... 27
 5.3 Directional spool valves with manual actuation A, C .. 29
 5.4 Spool valves with actuation EA, EDA and E 29
 5.5 Lift monitoring ... 31
 5.6 Spool valves with actuation H, HA and HEA 32
 5.7 Spool valves with actuation P and PA 32
 5.8 Mechanical 2-axis joy-stick 33
 5.9 Spool valves with LS-pressure limitation,
 functional cut-off and prop. pressure limitation 34
 5.10 Ancillary blocks 35
 5.11 Add-on intermediate plates ZPL 5 39
6. Appendix ... 40
 6.1 Notes for selection and lay-out 40
 6.2 Circuit examples .. 44
 6.3 Notes regarding assembly, installation and conversion 45

Further technical information:

<table>
<thead>
<tr>
<th>Size</th>
<th>Design</th>
<th>Pamphlet</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Valve bank design</td>
<td>D 7700-2</td>
</tr>
<tr>
<td>2</td>
<td>Valve bank design (CAN onboard))</td>
<td>D 7700 CAN</td>
</tr>
<tr>
<td>3</td>
<td>Valve bank design</td>
<td>D 7700-3</td>
</tr>
<tr>
<td>3, 5</td>
<td>Manifold mounting design</td>
<td>D 7700-F</td>
</tr>
<tr>
<td>7</td>
<td>Manifold mounting design</td>
<td>D 7700-7F</td>
</tr>
</tbody>
</table>

Mounting

1. End plate
2. Directional spool valve
3. Connection block
2. Type coding, overview

Order example: (For additional examples, see also sect. 6.2)

PSL 6 1F80/400 - 5 - 5 2 J 160/160 A300 F 3/E A1

- 5 2 O 63/120 2C50 /EA
- 5 2 H 120/120 S /EA
- A 1 L 40/25 /A

/5 AS300 BS300 - E 1 - G 24

A total of max. 10 valve sections, in one or more valve bank(s), can be connected in series via the internal LS-duct.

External piping is required, if more are requested (see also note at sect. 6.1g).

1. Basic type code for the connection block
 (for more details see sect. 3.1)
 - PSL: Supply with pressurized oil by means of constant delivery pump (open center).
 - PSV: Supply with pressurized oil by means of variable displacement pump with a delivery /flow controller (closed center), as a second, separate unit, or if both valve banks are connected to a constant pressure system.
 - PSM: Supply of pressurized fluid either via constant delivery or variable displacement pump. For external circuitry, see sect. 3.1)

2. Ports at the connection block for P and R
 - G: Supply of pressurized fluid either via constant delivery or variable displacement pump. For external circuitry, see sect. 3.1)
 - G 1 (ISO 228/1) (BSPP)
 - G 1 1/4 (ISO 228/1) (BSPP)
 - UNF 6: 5/8-12 UN-2B (SAE-20, SAE J 514)

3. Additional elements (see table 2 and 4 in section 3.1)
 - Basic version
 - Additional damping device in gallery LS
 - B...: Orifice in gallery LS
 - G: Restrictor check valve
 - H: Raised circulation pressure of the 3-way flow controller (approx. 14 bar, type PSL)
 - U, UH: Automatic reduction of the pump idle circulation pressure by means of a by-pass valve (only type PSL)
 - Y, YH: Separate, pressure resistant port for the excess oil from the 3-way flow controller (type PSL)
 - N: Function integrated for the P gallery, (only type PSV)

4. Control oil supply (see table 7, sect. 3.1.4)
 - Without pressure reducing valve, if control oil is supplied externally (min. 20 bar up to max. 40 bar)
 - With integrated pressure reducing valve for the internal supply with control oil
 - With integrated pressure reducing valve for the internal supply with control oil (control pressure approx. 40 bar)

5. Optional 2/2-way solenoid valve for arbitrary idle pump circulation (see table 8, sect. 3.1.4)
 - Without directional valve, but prepared for retrofitting
 - De-energized open = Idle pump circulation when valve is de-energized (with valve WN 1F or EM 21 DSE)
 - De-energized closed = Idle pump circulation when valve is energized (with valve WN 1 D or EM 21 DE)
 - If a pressure is specified, with pressure limiting valve which can be activated as a second pressure stage (e.g. F80)
 - Prop. pressure limiting valve with various pressure ranges

6. Tool adjustable, piloted pressure limiting valve (main pressure limitation) in the connection block (see table 9, sect. 3.1.4)
 - Without pressure limiting valve (only type PSV)
 - Pressure limiting valve, factory set to ... bar
 - Size (dep. on the hole-pattern of the mounting area for the spool valves to be added)
 - Size 5
 - (for size 2, see D 7700-2)
 - (for size 3, see D 7700-3)

7. Ports at the directional spool valve for A and B
 - G 1 (ISO 228/1)
 - A: S. F.

8. Add-on intermediate plates (see sect. 3.2.2) Position ⑤ ... ⑦ are omitted
 - ZPL 5 S(V)/H: Hydraulically actuated shut-off valve
 - ZPL 5 S(V)/E: Solenoid actuated shut-off valve
 - ZPL 5 P6 R6: Additional pump and return port G 1 1/4 (BSPP)
 - ZPL 55/9: Spacer plate 9 mm
 - ZPL 50 T: Blocking intermediate plate

9. Directional spool valve (see table 13, sect. 3.2.1)
 - 2 (standard): Spool valve with inflow controller for each consumer
 - 1: Spool valve without inflow controller, suitable for consumers, which are actuated individually and successively but not simultaneously (no additional functions possible)
 - 5, 7: Inflow controller with enforced spring for higher flow
 - 8, 81: 4/3-way directional spool valve (pre-selector spool valve)
 - R 2, R 5, R 7: Like 2, 5, 7 but with check valve function
 - Coding for the flow pattern (see sect. 3.2.1, table 14)
 - ... Coding for port A or B (independently selectable)
 - 16, 25, 40, 63, 80, 120, 160

10. Flow coding for ports A and B (see table 15, sect. 3.2.1)
 - ... Coding for port A or B (independently selectable)
 - LS-pressure limitation (deviating from the main pressure setting, lower pressure for the connected consumer) no shock valves (see sect. 3.2.1, table 16) (doesn't apply to spool valve types without inflow controller)
 - (no coding) No LS-pressure limitation
 - A...: Only for consumer port A
 - B...: Only for consumer port B
 - A...B...: For consumer port A and B
 - C...: Joint for consumer port A and B (not in conjunction with @ F, or S)
Functional cut-off (see table 17, sect. 3.2.1), doesn’t apply to spool valves types without inflow controller

F 1 Electrical cut-off, consumer port A
F 2 Electrical cut-off, consumer port B
F 3 Electrical cut-off, consumer port A and B
FP 1(2, 3) Like F 1(2, 3), however with electro-proportional pressure limitation
FPH 1(2, 3) Like FP 1(2, 3), however with additional push-button for manual emergency actuation
S, S 1 External hydraulic load signal pick-up from the control signal port U (consumer port A) and W (consumer port B)
X External load pressure pick-up via control port X (common for A and B)

Types of actuation (see sect. 3.2.1, table 20)
/A Manual actuation
/E Electro-hydraulic actuation
/EA Hydraulic (solenoid) and manual actuation
/E0A Like /EA, however without actuation solenoid (prepared for retrofitting)
/H Hydraulic actuation
/H UNF Like /H, however with port thread 7/16-20
HA, HEA, /FA like /H, however with port thread 7/16-20
HA UNF Like /HA, however with port thread 7/16-20
/C, AR Detent (stepless), 3-step detent
/ER, /EAR Electrical, 3-step detent
/P Pneumatic actuation
/PA Pneumatic and manual actuation
/K Mechanical joy-stick (2-axis)
/... Suffix
/WA, WA-EX Integrated travel indicator
/U Lift monitoring (side indication)

Ancillary blocks (acc. to table 19 in sect. 3.2.1), into combination with coding A of ④
/5, /UNF 5 Ancillary blocks without additional functions
/5 AS, BS,.. Ancillary blocks with shock valves at A
/UNF 5 AS, BS,.. and B (routed to the opposing side), with pressure specification (bar)
/5 AN.., BN.. Ancillary blocks with shock and suction
/UNF 5 AN, BN,.. valves at A and B, with pressure specification (bar)
/4 ASN.. BSN,.. With shock and suction valves A or B
/5 AN,.. /5 BN,.. Ancillary blocks with over-center valves at A
/5 AL,.. Ancillary blocks with over-center valves at B, with pressure specification (bar)
/5 VV(VX, XV) Ancillary blocks with blocking function via EM 42 V
/UNF 5 VV(VX, XV) Ancillary blocks with shut-off valves EM 42 V acc. to D 7490/1 (one or both sided) blocking the consumer with zero leakage (Cmax approx. 160 lpm)
/5 DRH, /UNF 5 DRH Ancillary blocks with releasable check valves
/54 DFA, /54 DFB Ancillary blocks for re-regenerative circuit
/54 DEA, /54 DEB Ancillary blocks switch able regenerative circuit
/5 R VV Ancillary blocks with Bypass-valves

Intermediate plates (acc. to table 11, sect. 3.2.1)
/Z 30 Spacer plate
3. Available versions, main data

3.1 Connection blocks and end plates

There are three basic variations of connection blocks:

- Connection blocks with integrated 3-way flow controller, suitable for a constant delivery pump system (open-center) - type PSL (see sect. 3.1.1)
- Connection blocks suited for a variable displacement pump system (closed center), a constant pressure systems, or if a second or more separately located directional spool valve banks are fed in parallel - type PSV (see sect 3.1.2)
- Connection blocks for arbitrary supply with pressurized oil either by means of constant delivery pump or variable displacement pump (external connection) - type PSM (acc. to 3.1.3)

Order coding for a connection block as individual section (examples):

<table>
<thead>
<tr>
<th>Description</th>
<th>Coding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attention: Size specification absolutely necessary, here -5</td>
<td></td>
</tr>
<tr>
<td>PSV 51</td>
<td></td>
</tr>
<tr>
<td>PSL 61 F/250 - 5 - G 24</td>
<td></td>
</tr>
</tbody>
</table>

3.1.1 Connection blocks for constant delivery pump systems (with integrated 3-way flow controller) type PSL

Order example: PSL 5 1 F 0/350-5 -..- E 1 - G 24

Table 1: Basic type and port size

<table>
<thead>
<tr>
<th>Coding</th>
<th>Port P and R conf. ISO 228/1 (BSPP) or SAE J 514</th>
<th>Max. pump delivery flow (lpm)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSL 5</td>
<td>G 1</td>
<td>250</td>
<td>Standard, integrated 3-way flow controller, can be converted in a version for variable displacement pumps (corresponding type PSV) any time, see sect. 6.3.3</td>
</tr>
<tr>
<td>PSL 6</td>
<td>G 1 1/4</td>
<td>300</td>
<td>Automatic reduction of the idle pump circulation pressure by means of a by-pass valve (see also sect. 6.1a, (Q_{pu} \geq 150) lpm with solenoid actuation)</td>
</tr>
<tr>
<td>PSL 6 U</td>
<td>G 1 1/4</td>
<td>300</td>
<td>Additional pressure resistant port for excess of from the 3-way flow controller (see also sect. 6.1a). This version also includes the by-pass valve like with type PSL 5(6) U</td>
</tr>
<tr>
<td>PSL 6 Y</td>
<td>G 1 1/4</td>
<td>300</td>
<td>Note: A spacer plate type SL 5-ZPL 55/9 (see table 22, sect. 3.2.2) has to be installed right after the connection block whenever type PSL 5(6), PSV 5(6) and PSM 6 is combined with a valve section with ancillary block (coding SL 5-A.. acc. to table 12 and 19) as otherwise it is not possible to mount a fitting in port R.</td>
</tr>
</tbody>
</table>

Table 2: Coding for additional elements (for notes and descriptions, see sect. 6.1a)

<table>
<thead>
<tr>
<th>Coding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>no coding</td>
<td>Standard Featuring a combination of orifice, check valve, pre-load valve (pre-load pressure approx. 25 bar)</td>
</tr>
<tr>
<td>W</td>
<td>Like standard, but with increased throttle effect</td>
</tr>
<tr>
<td>G</td>
<td>Restrictor check valve (without sequence valve), increased throttling effect</td>
</tr>
<tr>
<td>H</td>
<td>Coding for 3-way flow controller with raised circulation pressure (see sect. 4.2), otherwise similar flow pattern symbol as the standard version. Intended e.g. for valve spools with increased flow (coding 5 acc. to table 15)</td>
</tr>
</tbody>
</table>

Flow pattern symbols

(see also sect. 3.1.4)
3.1.2 Connection blocks for variable displacement pump systems / constant pressure system or for other more separately, parallel connected directional spool valve banks type PSV

Order example:

- PSV 6 S 1 5 - 5 -...- E 1
- PSV 5 1 F/300 5 - 5 -...- E 1 - G 24

Nominal voltage, see table 10

Table 3: Basic type and port size

<table>
<thead>
<tr>
<th>Coding</th>
<th>Port P and R conf.</th>
<th>Max. pump delivery flow (lpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSV 5</td>
<td>G 1</td>
<td>approx. 250</td>
</tr>
<tr>
<td>PSV 5 N</td>
<td>G 1</td>
<td>approx. 300</td>
</tr>
<tr>
<td>PSV 6</td>
<td>G 1 1/4</td>
<td>approx. 300</td>
</tr>
<tr>
<td>PSV UNF 6</td>
<td>1 5/8-12 UN-2B (SAE-20)</td>
<td>approx. 300</td>
</tr>
</tbody>
</table>

The connection blocks type PSV 5, PSV 6 and PSV UNF 6 featuring a pressure limiting valve, may be converted any time into type PSL (standard) see pos. 6.3.3

Note: A spacer plate type SL 5-ZPL 55/9 (see table 22, sect. 3.2.2) has to be installed right after the connection block whenever type PSL 5(6), PSV 5(6) and PSM 6 is combined with a valve section with ancillary block (coding SL 5-A.. acc. to table 12 and 19) as otherwise it is not possible to mount a fitting in port R or LS (PSV 5 N).

Order example:

- PSV 5 N S 1 300/270 - 5
- PSV 5 N S 2 V 250/270 - 5
- PSV 5 N S Z 350/310 - 5

Table 3 a: LS-relief

<table>
<thead>
<tr>
<th>Coding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>no coding</td>
<td>Without arbitrary relief, prepared for retrofitting of a directional seated valve type EM 11 S(V) acc. to D 7490/1</td>
</tr>
<tr>
<td>V</td>
<td>With 2/2-directional seated valve type EM 11 V acc. to D 7490/1 (closed when deenergized)</td>
</tr>
<tr>
<td>Z</td>
<td>With 2/2-directional seated valve type EM 11 S acc. to D 7490/1 (open when deenergized)</td>
</tr>
</tbody>
</table>

The high control pressure of variable displacement pump controllers may lead to unintentional movements of consumers with low load pressure even while the respective valve is in its idle position. The pump gallery is completely blocked with type PSV 5 N to ensure a definitive separation of pump and consumer circuit. This takes place by means of a solenoid valve. The LS-gallery together with the LS-controller may be additionally relieved via a separate 2/2-way directional seated valve.

Table 4: Codings for features within the LS-signal duct to dampen the pump flow controllers (For notes and explanation, see sect. 6.1 a). Additional features only suitable where variable displacement pumps are used (limitation of the control oil flow). See also note at table 8!

<table>
<thead>
<tr>
<th>Coding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>no coding</td>
<td>Standard, no additional feature</td>
</tr>
<tr>
<td>S</td>
<td>Integrated combination of orifice, check valve, pre-load valve (pre-load pressure approx. 25 bar); like standard with type PSL</td>
</tr>
<tr>
<td>W</td>
<td>Like S, however increased throttle effect</td>
</tr>
<tr>
<td>B</td>
<td>Orifice (\otimes) 0.8 mm within LS-duct (to limit control oil flow).</td>
</tr>
<tr>
<td>B 4, B 5, B 6, B 7</td>
<td>Orifice (\otimes) 0.4 mm, 0.5 mm, 0.6 mm or 0.7 mm within LS-duct</td>
</tr>
</tbody>
</table>
3.1.3 Connection block type PSM

The connection block can be used either for a constant delivery pump or for variable displacement pump system by appropriate external connection.

Order example: **PSM 6.1 F/200 - 5 -...- E 5 - G 24**

Table 5: Basic type and port size

<table>
<thead>
<tr>
<th>Coding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSM 6</td>
<td>G 1 approx. 300</td>
</tr>
<tr>
<td>PSM UNF 6</td>
<td>1 5/8-12 UN-2B (SAE-20) approx. 300</td>
</tr>
</tbody>
</table>

Note: A spacer plate type SL 5-ZPL 55/9 (see table 22 sect. 3.2.2) has to be installed right after the connection block whenever type PSM 6 is combined with a valve section with ancillary block (coding SL 5-A.. acc. to table 12 and 19) as otherwise it is not possible to mount a fitting in port R.

Table 6: Coding for additional elements

<table>
<thead>
<tr>
<th>Coding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Coding for 3-way flow controller with increased idle circulation pressure (see sect. 4.2) otherwise identical to the standard version, e.g. suited for valve spools with increased flow rating (coding 5, see table 15)</td>
</tr>
</tbody>
</table>

Table 7: Coding for control oil supply (for symbol, see sect. 3.1.1, 3.1.2 and 3.1.3)

<table>
<thead>
<tr>
<th>Coding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>no coding</td>
<td>If not required</td>
</tr>
<tr>
<td>1</td>
<td>With integrated pressure reducing valve for internal control oil supply for actuations H(HA), HEA.. and E(EA).. or as pick-up for other control valves (max. permissible control oil flow approx. 2 lpm)</td>
</tr>
<tr>
<td>2</td>
<td>Control pressure: Coding 1: approx. 20 bar (+ return pressure at R) Coding 2: approx. 40 bar (+ return pressure at R)</td>
</tr>
</tbody>
</table>

Table 8: Arbitrary idle pump circulation of all consumers by means of 2/2-way solenoid valve type WN 1 acc. to D 7470 A/1.

<table>
<thead>
<tr>
<th>Coding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>With WN 1 F, idle pump circulation if valve is de-energized (emergency stop)</td>
</tr>
<tr>
<td>D</td>
<td>With WN 1 D, idle pump circulation if valve is energized</td>
</tr>
<tr>
<td>F... or D...</td>
<td>With pressure limiting valve, which can be activated as a second pressure stage (specify pressure in bar) (pre-set pressure, tool adjustable from 50 to 400 bar) Example: Type PSL 41 F 100/350-3.. De-energized (p_{max}) 100 bar Energized (p_{max}) 350 bar</td>
</tr>
</tbody>
</table>

Note: To limit the control oil flow, when using the idle pump circulation with type PSV an additional element coding S, W or B 4, B 5, B 6 acc. to table 4 is required.

Attention: Observe note in sect. 6.1 a when using the valves for an emergency stop function!

3.1.4 Additional elements for the connection blocks

Order example: **PSL 6. 1 F 100 /380 - 5 -...- E 1 - G 24**

Flow pattern symbols (see also sect. 3.1.4)

- Connection appropriate for constant delivery pump systems
- Connection appropriate for variable displacement pump systems

Diagram:

1) 3/2-way directional valve not scope of delivery

Table 9: Arbitrary idle pump circulation of all consumers by means of 2/2-way solenoid valve type WN 1 acc. to D 7470 A/1.

2/2-way solenoid valve type EM 21 DE (DSE) acc. to D 7490/1 E and prop. pressure limitation.

Attention: Observe note in sect. 6.1 a when using the valves for an emergency stop function!

Note: This connection is to be customer furnished. The required pipes and fittings are not part of the delivery.

Table 10: Arbitrary idle pump circulation of all consumers by means of 2/2-way solenoid valve type WN 1 acc. to D 7470 A/1.

<table>
<thead>
<tr>
<th>Coding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA, PB, PD</td>
<td>Prop. pressure limiting valve enables variable adjustment of the system pressure range: PA 100...320 bar, PB 15...250 bar, PD 18...400 bar</td>
</tr>
<tr>
<td>Z</td>
<td>Prop. pressure limiting valve type EM 21 DSE, open when deenergized</td>
</tr>
<tr>
<td>ZM</td>
<td>Like Z, but with lead sealed wing screw for emergency operation</td>
</tr>
<tr>
<td>V</td>
<td>Prop. pressure limiting valve type EM 21 DE, closed when deenergized</td>
</tr>
<tr>
<td>X...</td>
<td>Additional LS pressure limitation (50...400 bar) Not suited to compensate pressure peaks on the consumer side.</td>
</tr>
</tbody>
</table>
Table 9: Tool adjustable pressure limiting valve for the main pressure. Adjustable from 50 up to 420 bar, after slackening the lock-nut (for symbol, see sect. 3.1.1, 3.1.2 and 3.1.3).

<table>
<thead>
<tr>
<th>Coding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>no coding</td>
<td>Version without pressure limiting valve (only type PSV)</td>
</tr>
<tr>
<td>/...</td>
<td>With pressure limiting valve at PSL and PSV, if pressure specification in bar is added</td>
</tr>
<tr>
<td>non piloted: PSV 5 N</td>
<td></td>
</tr>
<tr>
<td>piloted: All others</td>
<td></td>
</tr>
</tbody>
</table>

Table 10: Solenoid voltage and version

<table>
<thead>
<tr>
<th>Coding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suffix: Applies only to the solenoid actuation coding E, EA, HEA, FEA (table 20) and the functional cut-off (coding F, FP, table 17), see also sect. 4.3</td>
<td></td>
</tr>
<tr>
<td>Actuation solenoid 3-pin (standard)</td>
<td></td>
</tr>
<tr>
<td>Manual emerg. actuation (standard with functional cut-off F., FP., see table 17)</td>
<td></td>
</tr>
<tr>
<td>Manual emerg. actuation with pushbutton (standard with functional cut-off FPH., FP., see table 17)</td>
<td></td>
</tr>
<tr>
<td>G 24 C 4</td>
<td>Electr. connection conf. EN 175 301-803 C, via plug (MSD 6-209), 4-pin actuation solenoid</td>
</tr>
<tr>
<td>X 12 . X 24 .</td>
<td>Electr. connection conf. EN 175 301-803 A, without plug. For options, see coding G...</td>
</tr>
<tr>
<td>S 12 . S 24 T</td>
<td>Electr. connection via quarter turn type plug (Bayonet PA 6, Co. SCHLEMMER D-85586 Poing, suited for taper with bayonet 10 SL), 3-pin actuation solenoid</td>
</tr>
<tr>
<td>Suffix: Manual emergency actuation (standard with functional cut-off FP., table 17)</td>
<td></td>
</tr>
<tr>
<td>AMP 12 K 4</td>
<td>Vertical connection via plug AMP Junior Timer, solenoid features 4 terminals</td>
</tr>
<tr>
<td>AMP 24 K 4</td>
<td>Vertical connection via plug AMP Junior Timer, solenoid features 4 terminals and manual emergency actuation</td>
</tr>
<tr>
<td>AMP 24 H 4 T</td>
<td>Lateral connection via plug AMP Junior Timer, solenoid features 4 terminals and manual emergency actuation</td>
</tr>
<tr>
<td>DT 12 DT 24</td>
<td>Connection via plug Co. DEUTSCH DT 04-4P, suited for socket DT 06-4S</td>
</tr>
<tr>
<td>G 24 EX G 24 EX-10 m</td>
<td>For use in areas with explosion hazardous atmosphere. Suiited for category 2 and 3, zone 1, 21, 2, 22.</td>
</tr>
<tr>
<td>Protection class EEx m II 120° (T4)</td>
<td></td>
</tr>
<tr>
<td>with cable length 3 m (no coding) or 10 m</td>
<td></td>
</tr>
<tr>
<td>3-pin actuation solenoid</td>
<td></td>
</tr>
<tr>
<td>3-pin actuation solenoid with manual emergency actuation</td>
<td></td>
</tr>
<tr>
<td>4-pin actuation solenoid</td>
<td></td>
</tr>
<tr>
<td>4-pin actuation solenoid with manual emergency actuation</td>
<td></td>
</tr>
<tr>
<td>G 24 TEX 70 G 24 TEX-10 m</td>
<td>Like G 24 EX... but for ambient temperature < 70°C</td>
</tr>
<tr>
<td>G 12 IS G 12 IS-10 m</td>
<td>For use in mines and its on-surface systems, which can be endangered by fire damp and/or combustible dust.</td>
</tr>
<tr>
<td>Protection class I M2 Ex d I (fire-damp protected), with cable length 5 m (no coding) or 10 m</td>
<td></td>
</tr>
<tr>
<td>G 24 MSHA G 24 MSHA-10 m</td>
<td>For use in mines and its on-surface systems, where a ATEX (EU), IEC, MSHA (USA) or MA (China) approval is mandatory.</td>
</tr>
<tr>
<td>Protection class I M2 Ex d I (fire-damp protected) with cable length 3 m (no coding) or 10 m</td>
<td></td>
</tr>
<tr>
<td>G 24 M2 FP G 24 M2 FP-10 m</td>
<td>For use in mines and its on-surface systems, where a IEC or ANZE (Australien) approval is mandatory.</td>
</tr>
<tr>
<td>Protection class I M2 Ex d I (fire-damp protected) with cable length 3 m (no coding) or 10 m</td>
<td></td>
</tr>
</tbody>
</table>

Note:
- Solenoids of explosion-proof design are only available for actuation E, EA or HEA (table 20).
- An intermediate plate ZPL 33/5 (see table 22) has to be provided between the valve sections when using solenoids G 12 IS., G 24 MSHA... and G 24 M2 FP.
- Coding G 24 C 4 (X 24 C 4) is only available for solenoids of the electrical actuation (table 20) where there is no manual emergency actuation.
- Coding AMP... DT... not available for idle circulation valves coding D, F, PA, PB, PD (table 8), intermediate plates ZPL 5 S(V)E (table 22), end plates E 3, E 6 (table 11), functional cut-off coding F., (table 17)
- Coding S.. Not available for functional cut-off coding F. (table 17) and comparator coding U (table 21)
Symbole

PSL 5(6).1./..-5
PSL UNF 6.1./..-5

PSL 5(6)U.1./..-5
PSL 6 Y.1./..-5

PSV 5(6).1.-5
PSV UNF 6.1./..-5

PSL(V)...PA(PB, PD)
PSL(V)...F
PSL(V)...Z
PSL(V)...ZM
PSL(V)...F..
PSL(V)...D
PSL(V)...V
PSL(V)...D..
PSL(V)...X
3.1.5 End plates

Order example: PSL 51 F 100/380 - 5 - 52... - E 1 - G 24

Table 11: End plates

<table>
<thead>
<tr>
<th>End plate</th>
<th>Internal control oil return gallery</th>
<th>Ports</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 1</td>
<td>E 4 UNF</td>
<td>E 4 UNF ISO 228/1 (BSPP): T, Y = G 1/4, P = G 1, R = G 1 1/4</td>
<td></td>
</tr>
<tr>
<td>E 2</td>
<td>E 5</td>
<td></td>
<td>Standard end plate</td>
</tr>
<tr>
<td>E 7</td>
<td>E 9</td>
<td></td>
<td>With additional inlet port Y e.g. for connecting the LS-control pipe of a subsequent PSV spool valve bank.</td>
</tr>
<tr>
<td>E 8</td>
<td>E 10</td>
<td></td>
<td>Possibility for arbitrary shut-off of the idle pump circulation by means of a directly mounted 3/2-way directional seated valve WN 1 H acc. to D 7470 A/1</td>
</tr>
<tr>
<td>E 13</td>
<td>E 15 E 15 UNF</td>
<td>E 15 UNF Like E 1/E 4, but with additional port P</td>
<td></td>
</tr>
<tr>
<td>E 14</td>
<td>E 16 E 16 UNF</td>
<td>E 16 UNF Like E 2/E 5, but with additional port P</td>
<td></td>
</tr>
<tr>
<td>E 7 A 1</td>
<td>E 7 A 2</td>
<td>---</td>
<td>Like E 1/E 4, but with additional port R</td>
</tr>
<tr>
<td>E 8 A 1</td>
<td>E 8 A 2</td>
<td></td>
<td>Like E 2/E 5, but with additional port R</td>
</tr>
<tr>
<td>ZPL 53</td>
<td>ZPL 53 RB</td>
<td>T = G 1/4 Adapter plate to continue a prop. direct. valve bank size 5 with sections of size 3</td>
<td></td>
</tr>
<tr>
<td>ZPL 52</td>
<td></td>
<td></td>
<td>Adapter plate to continue a prop. direct. valve bank size 5 with sections of size 2</td>
</tr>
<tr>
<td>E 1 PSL 56..</td>
<td>E 1 PSV 56..</td>
<td>P2 = G 1 R2 = G 11/4 End plate with additional connection block functionality, see table 1 and 3, sect. 3.1.1 and sect. 3.1.2. Intended as additional inlet section or as dual circuit when combined with intermediate plate ZPL 50 T.. acc. to table 22, the LS-signal has to be routed externally from the connection block (type E PSL 56) or the intermediate plate (type ZPL 50 T) to port DW 2.</td>
<td></td>
</tr>
</tbody>
</table>

Note: The internal control oil return line has to be used only at systems where the return pressure does not exceed 10 bar

Symbole

![Diagram of end plates and symbols](image-url)
3.2 Add-on spool valves

3.2.1 Directional spool valve

Order example: PSV 61/380 - 5 - 5 2 L 160/80 A300 F 1 /EA - E 1- G 24

Order code for single section (examples):
- Directional spool valve: SL 5-52 J 80/40 F 2/EA-G 24
- Valve spool (individual): SL 5 - J 120/40

Note: Size specification absolutely necessary. Here SL 5 ! The valve spools are subsequently interchangeable, e.g. if a different flow rating than initially planned becomes necessary (see sect. 6.3.4)

Table 12: Port size A and B

<table>
<thead>
<tr>
<th>Coding</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>G 1 (ISO 228/1) (BSPP)</td>
</tr>
<tr>
<td>A</td>
<td>With ancillary blocks acc. to table 19</td>
</tr>
</tbody>
</table>

Note: A spacer plate type SL 5-ZPL 55/9 (see table 22, sect. 3.2.2) has to be installed right after the connection block whenever type PSL 5(6), PSV 5(6) or PSM 5(6) is combined with a valve section with ancillary block (coding SL 5-A.. acc. to table 12 and 19) as otherwise it is not possible to mount a fitting in port R.

Table 13: Spool valve; basic unit

<table>
<thead>
<tr>
<th>Coding</th>
<th>Features, description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Standard, with inflow controller, for simultaneous load compensated moving of several consumers (3/3-, 4/3-way spool valve, standard type)</td>
</tr>
<tr>
<td>1</td>
<td>Without inflow controller intended for singly / successively actuated functions. Additional functions on the consumer side are not possible. For the max. consumer flow of the indiv. consumer, see table 15, and sect. 6.1b</td>
</tr>
<tr>
<td>5</td>
<td>With inflow controller (for symbol, see coding 2) but with reinforced spring at the 2-way flow controller (control pressure approx. 9 bar). Only usable in conjunction with connection block type PSL.H./... or type PSV with variable displacement pump / constant pressure system. (For note, see sect. 6.1a and b)</td>
</tr>
<tr>
<td>7</td>
<td>With inflow controller (for symbol, see coding 2) but with reinforced spring at the 2-way flow controller (control pressure approx. 13 bar). Only usable in combination with connection block type PSV with variable displacement pump / constant pressure system. (For note, see sect. 6.1b)</td>
</tr>
<tr>
<td>8</td>
<td>4/3-way directional spool valve, utilized as pre-selector (also, see symbol page 13), only available with ports G 1*, (acc. to table 12) coding -58. This version is only recommended with flow coding L or H and max. flow. Only usable in conjunction with connection block type PSL.H./... or type PSV with variable displacement pump / constant pressure system. (* = BSPP) (For note in sect. 6.1c)</td>
</tr>
<tr>
<td>81</td>
<td>Like coding 8, but without LS-input from consumer port B to the main LS-gallery (For note in sect. 6.1b)</td>
</tr>
<tr>
<td>82</td>
<td>Like coding 8, but without shuttle valve. The LS-signal for subsequent valve sections is generated at the P-gallery (For note in sect. 6.1b)</td>
</tr>
<tr>
<td>R 2</td>
<td>Like coding 2, 5, 7, but with additional check valve functionality (spool valve = slight leakage), (For note in sect. 6.1b)</td>
</tr>
<tr>
<td>R 5</td>
<td>Only usable in conjunction with connection block type PSL.H./... or type PSV with variable displacement pump / constant pressure system.</td>
</tr>
</tbody>
</table>
Table 15: Max. flows P_d at consumer port A and B acc. to the coding

<table>
<thead>
<tr>
<th>Valve spool coding acc. to table 13</th>
<th>Flow coding $Q_{A,B}$ (lpm) at consumer port A and B</th>
<th>16</th>
<th>25</th>
<th>40</th>
<th>63</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>16</td>
<td>25</td>
<td>40</td>
<td>63</td>
<td>80</td>
<td>120</td>
<td>160</td>
</tr>
<tr>
<td>1</td>
<td>Valid for PSL (integrated 3-way flow controller $\Delta p \approx 9$ bar) otherwise as guideline [Q_{A,B} = Q_{nom} \cdot \sqrt{0.2 - \frac{\Delta P_{controller}}{14 \text{ bar}}}] Q_{nom} - Nom. flow with coding 2 $\Delta P_{controller}$ - Stand-by-pressure of the pump controller Example: $Q_{nom} = 120$ lpm, $\Delta P_{controller} = 14$ bar, $Q_{A,B} = 200$ lpm (guideline)</td>
<td>20</td>
<td>32</td>
<td>51</td>
<td>80</td>
<td>110</td>
<td>150</td>
<td>210</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>20</td>
<td>32</td>
<td>51</td>
<td>80</td>
<td>110</td>
<td>150</td>
<td>210</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>23</td>
<td>37</td>
<td>60</td>
<td>95</td>
<td>130</td>
<td>175</td>
<td>240</td>
</tr>
<tr>
<td>8, 81, 82</td>
<td>like coding 1 (only for port A)</td>
<td>20</td>
<td>32</td>
<td>51</td>
<td>80</td>
<td>110</td>
<td>150</td>
<td>210</td>
</tr>
</tbody>
</table>

The consumer flow for ports A and B can be selected freely and independently e.g. 63/40, 40/80. This allows tailoring the flow exactly to the respective requirements while still maintaining the full functional stroke. Additional there is the possibility of a stroke limitation.

Table 14: Symbole

<table>
<thead>
<tr>
<th>L</th>
<th>M</th>
<th>F</th>
<th>H</th>
<th>J</th>
<th>B</th>
<th>R</th>
<th>O</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 16: LS-pressure limiting valves, no shock valves (only availably for spool valves featuring an inflow controller, coding 2, 5 and 7 acc. to table 13!)

<table>
<thead>
<tr>
<th>Coding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>no coding</td>
<td>Without pressure limitation</td>
</tr>
<tr>
<td>A...</td>
<td>Pressure limitation at A with pressure specification</td>
</tr>
<tr>
<td>B...</td>
<td>Pressure limitation at B with pressure specification</td>
</tr>
<tr>
<td>A...B...</td>
<td>Pressure limitation at A and B with pressure specification</td>
</tr>
<tr>
<td>C...</td>
<td>With manual short-cut valve between A and B as well as drain valve for A or B to the tank</td>
</tr>
</tbody>
</table>

Pressure limitation $p_{min} = 50$ bar; $p_{max} = 400$ bar
Example: SL 3-32 H 63/40 A 250 B 200/A

Table 18: Possible combinations of the additional functions, see page 12

<table>
<thead>
<tr>
<th>Pressure limitation</th>
<th>Functional cut-off</th>
</tr>
</thead>
<tbody>
<tr>
<td>no coding</td>
<td>S</td>
</tr>
<tr>
<td>A or B</td>
<td></td>
</tr>
<tr>
<td>A and B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

Table 17: Functional cut-off (only avail. for spool valves with inflow controller coding 2, 5 and 7 acc. to table 13! Not in combination with flow pattern symbol N!)

<table>
<thead>
<tr>
<th>Coding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>no coding</td>
<td>Without functional cut-off</td>
</tr>
<tr>
<td>S, S 1</td>
<td>Load signal ports U and W (G 1/8) (BSPP) for external piping</td>
</tr>
<tr>
<td>X</td>
<td>Common load pressure signal port (G 1/8) (BSPP) for an external activation, only in combination with coding S (G 1 (BSPP), table 12)</td>
</tr>
<tr>
<td>FP 1, FP 2, FP 3</td>
<td>Like F1, F2, F3 but add. prop. pressure limitation at A or B as well as A and B, version FPH, with additional pushbutton for manual emergency actuation without tool</td>
</tr>
<tr>
<td>F 1, F 2</td>
<td>Electric functional cut-off at A or B</td>
</tr>
<tr>
<td>F 3</td>
<td>Electric functional cut-off at A and B</td>
</tr>
</tbody>
</table>

There remains a residual pressure when the LS gallery is relieved. When the return line is depressurized the residual pressure will be: relieved = $\Delta P_{block} + \Delta P_{controller}$ ($\Delta P_{controller}$ = control pressure of the inflow controller acc. to table 13)

Coding F, FP: $\Delta P_{block} = 10$ bar
Coding S, S 1: $\Delta P_{block} = 5$ bar
Coding X: $\Delta P_{block} = 1$ bar
Table 19: Ancillary blocks

Port size: \(/ \frac{5}{4} \) = G 1 (BSPP), \(/ \frac{4}{3} \) = G 3/4, \(/ \frac{5}{16} \) = 1 5/16-12 UNF-2B (SAE-16)

Observe note in table 1, 3 and 5

<table>
<thead>
<tr>
<th>Coding</th>
<th>Brief description</th>
<th>Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>(/ 5 /UNF 5)</td>
<td>Without additional functions</td>
<td></td>
</tr>
<tr>
<td>(/5\ AS... BS... /UNF 5 AS... BS...)</td>
<td>With shock at A and B, with pressure specification (bar)</td>
<td></td>
</tr>
<tr>
<td>(/4\ ASN.. BSN..)</td>
<td>With shock valves at A and B, with pressure specification (bar)</td>
<td></td>
</tr>
<tr>
<td>(/5\ AN... BN... /UNF 5 AN... BN...)</td>
<td>With shock and suction valves at A or B, with pressure specification (bar)</td>
<td></td>
</tr>
<tr>
<td>(/5\ AN...)</td>
<td>With shock and suction valves at A or B, with pressure specification (bar)</td>
<td></td>
</tr>
<tr>
<td>(/5\ BN...)</td>
<td>With by-pass valves type EM 22 V acc. to D 7490/1 for arbitrary customer relieve.</td>
<td></td>
</tr>
<tr>
<td>(/5\ R VV)</td>
<td>With by-pass valves type EM 22 V acc. to D 7490/1 for arbitrary customer relieve. Note: (Q_{\text{max}} = 40) lpm</td>
<td></td>
</tr>
<tr>
<td>(/5\ AL... /5 BL...)</td>
<td>With over-center valves at A or B. (For more details, see D 7918 type LHT 5)</td>
<td></td>
</tr>
<tr>
<td>(/Z 30)</td>
<td>Spacer plate 30 mm to compensate height differences between differing ancillary blocks or to prevent collisions of neighboring ancillary blocks when combined with other intermediate plates</td>
<td></td>
</tr>
</tbody>
</table>

Intermediate plates for parallel connection

- **/Z ALW-..**
 - With over-center valve for A or B and add. shuttle valve.
 - For type coding, see coding /5 AL or /5 BL

Example:

PSL 51 F/300 - 5 - A 2 H 40/40 C200/EA /5 AS220 BS220 - E 4 - G 24

Valve section suited for mounting of an ancillary block

Ancillary block

Bypass-throttle D2

<table>
<thead>
<tr>
<th>Coding</th>
<th>A 6</th>
<th>B 6</th>
<th>C 6</th>
<th>D 6</th>
<th>E 6</th>
<th>F 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(lpm)</td>
<td>250</td>
<td>200</td>
<td>150</td>
<td>100</td>
<td>50</td>
<td>25</td>
</tr>
</tbody>
</table>

Flow (lpm) / Release ration

- \((\varnothing \text{ mm}) \) plugged: 0.4, 0.5, 0.6, 0.7, 0.8
- Release ratio: 1:6, 1:4.26, 1.3, 1:1.95, 1:1.56, 1:0.79

Port size note

- \(/5\) = G 1 (BSPP), \(/4\) = G 3/4, \(/5\) = 1 5/16-12 UNF-2B (SAE-16)
Standard version acc. to table 13

With respect to flow configuration and actuation, these symbols are neutral and must be supplemented by the corresponding flow pattern symbols illustrated in table 12 or 19 or 20, see also example in table 19 and sect. 6.

4/3-way directional spool valve without inflow controller

4/3-way directional spool valve with inflow controller .2... (.5...)

4/3-way directional spool valve utilized as pre-selector. 8...

Additional function: Secondary pressure limitation acc. to table 16 for spool valves with inflow controller (no shock valve).

Functional cut-off, acc. to table 17, for spool valves with inflow controller.

Possible combinations:
- .X
- A.X
- B.X
- A.B.X
- .S (S 1)
- A.S
- B.S
- A.B.S
- .F 1, FP 1, FPH 1 (X)
- A.F 1, FP 1, FPH 1 (X)
- B.F 1, FP 1, FPH 1 (X)
- A.B.F 1, FP 1, FPH 1 (X)
- .F 2, FP 2, FPH 2 (X)
- A.F 2, FP 2, FPH 2 (X)
- B.F 2, FP 2, FPH 2 (X)
- A.B.F 2, FP 2, FPH 2 (X)
- .F 3, FP 3, FPH 3 (X)
- A.F 3, FP 3, FPH 3 (X)
- B.F 3, FP 3, FPH 3 (X)
- A.B.F 3, FP 3, FPH 3 (X)
Table 20: Types of actuation (for further explanations, see sect. 4.3)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spring return</td>
<td>Detent</td>
<td>In comb. with manual actuation</td>
<td>In comb. with solenoid and manual actuation</td>
<td>In comb. with solenoid and manual actuation</td>
</tr>
<tr>
<td>Coding</td>
<td></td>
<td></td>
<td>Purely hydraulic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>E0A</td>
<td>EA</td>
<td>HEA</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>E0C</td>
<td>EA</td>
<td>HEA</td>
<td>PA</td>
</tr>
<tr>
<td></td>
<td>AR</td>
<td>E0AR</td>
<td>E0AR</td>
<td>HEA</td>
<td>K</td>
</tr>
<tr>
<td>Symbols</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manipulated variables</td>
<td>Actuation angle</td>
<td>Control current ratio</td>
<td>Control pressure (bar)</td>
<td>Control pressure (bar)</td>
<td>Actuation angle</td>
</tr>
<tr>
<td></td>
<td>min. approx. 5°</td>
<td>min. approx. 0.2</td>
<td>min. approx. 5</td>
<td>min. approx. 2.5</td>
<td>approx. 5.19°</td>
</tr>
<tr>
<td></td>
<td>max. approx. 30°</td>
<td>max. approx. 1</td>
<td>max. approx. 18</td>
<td>max. approx. 7</td>
<td></td>
</tr>
</tbody>
</table>

Note:
- Approximate figures for start of flow (= min) at A or B up to the max. consumer flow according to the flow coding table 15, see curves in sect. 4.2.
- Hydraulic actuation type F.. acc. to D 7700 F has to be selected when combined with ancillary blocks! Difference between actuation H.. and F.. is the position of the control line ports. With actuations HE(A) or FE(A) observe also notes and circuit examples in sect. 6.1i!
- Type E0A, E0C, and E0AR is prepared for retrofitting solenoid actuations
- Type AR, ER, and EAR come with detent in the end positions, stroke limitation not possible
- Type EI - Version without stroke limitation
- Order example for type K, see sect. 6.1 h
- Type EM and EAM: Version with pressure gauge ports at the actuation heads
- Type E 9, E 9 A: Actuation torque like with H, HA

Table 21: Additional features for the actuations

<table>
<thead>
<tr>
<th>Type of actuation / coding</th>
<th>Suffix</th>
<th>Description</th>
<th>Example</th>
<th>Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, EA, HA, PA, C</td>
<td>1</td>
<td>Manual actuation without hand lever</td>
<td>EA 1, C 1</td>
<td>1</td>
</tr>
<tr>
<td>A, EA, HA, PA, C</td>
<td>2</td>
<td>Manual actuation with short hand lever (for dimensions, see sect. 5.3)</td>
<td>EA 2, A 2</td>
<td>2</td>
</tr>
<tr>
<td>A, EA, C, PA, K, HA</td>
<td>WA</td>
<td>Integrated position sensor (Hall-sensor) with analogous signal output (lift monitoring)</td>
<td>EA WA, A 1 WA</td>
<td>WA</td>
</tr>
<tr>
<td></td>
<td>WA-EX</td>
<td>Version WA-EX, explosion-proof version</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WA-M2 FP</td>
<td>Coding WA-M2 FP with fire-damp protected version (mining)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A, EA, C, PA, HA, HEA, FA, FEH</td>
<td>U</td>
<td>Integrated spool monitoring for side indication (Comparator triggered signal: ON / OFF)</td>
<td>EA U</td>
<td></td>
</tr>
<tr>
<td>A, C, E, E0A</td>
<td>(G)</td>
<td>no coding</td>
<td>Reinforced version of the spring cover, intended when high pressure surges are expected in the T-line.</td>
<td></td>
</tr>
</tbody>
</table>
3.2.2 Add-on intermediate plates

Order example: PSL 51/250-5-32 H 63/40 /EA

- **ZPL 5 S/H**
- **ZPL 5 P6 R6 ER**

<table>
<thead>
<tr>
<th>Coding</th>
<th>Brief description</th>
<th>Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZPL 5 S/H</td>
<td>The shut-off valve can arbitrarily block the pump gallery for all subsequent consumers. The switching signal can be either hydraulically (/H) or electrical (/E). The connection to all subsequent valve sections can be either open (S) or blocked (V) if not actuated. The main application is with circuits where it is necessary to lock (block) one or more consumers due to functional or safety reasons. (P_{\text{switch}} \leq 12 \text{ bar}) ((P_{\text{max}} S = 400 \text{ bar}))</td>
<td> </td>
</tr>
<tr>
<td>ZPL 5 P6 R6</td>
<td>Additional pump and return port G 1 1/4 (BSPP)</td>
<td></td>
</tr>
<tr>
<td>ZPL 5 P6 R6 ER</td>
<td>Like ZPL 5 P6 R6, but with additional check valve in gallery R and additional tank port T. It can be only used when ZFL 52 (see table 11) is mounted subsequently.</td>
<td></td>
</tr>
<tr>
<td>ZPL 55/9</td>
<td>Spacer plate (9 mm) between connection block and first valve section, necessary when this section is equipped with an ancillary block (acc. to table 19). Observe note intable 1, 3 an 5.</td>
<td></td>
</tr>
<tr>
<td>ZPL 50 T</td>
<td>Intermediate plate separating two systems working individually (in combination with end plate E 1 (PSL) or E 4 (PSV) 56 acc. to table 11. Note: The LS-signal from port LS 2 has to be routed externally from the connection block (type E. PSL 56) to port DW 2. Coding for add. element in the LS signal line, see table 4.</td>
<td></td>
</tr>
</tbody>
</table>

Table 22: Add-on intermediate plates

<table>
<thead>
<tr>
<th>Coding</th>
<th>Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZPL 5 S/H</td>
<td>Directional seated valve type WN 1 H acc. to D 7470 A/1</td>
</tr>
<tr>
<td>ZPL 50 T</td>
<td></td>
</tr>
</tbody>
</table>

Table 22: Add-on intermediate plates

<table>
<thead>
<tr>
<th>Coding</th>
<th>Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZPL 5 S/H</td>
<td>Directional seated valve type WN 1 H acc. to D 7470 A/1</td>
</tr>
<tr>
<td>ZPL 50 T</td>
<td></td>
</tr>
</tbody>
</table>
4. Characteristic data

4.1 General and hydraulic

Type coding
PSL, PSV or PSM see sect 3.1

Design
Spool valve of block design, up to 10 spool valves, all-steel

Mounting
Tapped holes: M10; see dimensions sect. 5++

Installation position
Arbitrary

Ports
P = Pressure inlet (pump) / lead-on
R = Return
A, B = Consumer ports
F = Pressure resistant return
U, W, X = Load-signal outlet at the indiv. spool valve section
LS, DW = Load-signal outlet e.g. connection of pump metering valve at PSV.

Attention: no pressure input!

Surface coating
All surfaces corrosion-inhibiting, gas nitried

Solenoid at actuation E... and additional functions F 1... F 3, FP 1... FP 3, FPH 1... FPH 3

galvanisch verzinkt und oliv passiviert

Solenoids at actuation EB zinc galvanized EN 12329-Fe/Zn 12c

Housing with actuation P and PA: anodized

Mass (weight) approx.

Connection block: PSL 5(6) = 4.5 kg 1) End plates: E 1, E 2, E 4, E 5 = 2.5 kg
PSV 5(6)/.. = 7.7 kg 1) E 1(4) UNF = 2.5 kg
PSM 6 = 4.5 kg 1) E 3, E 6 = 3.1 kg
E 1(F 4) PSL/V 56 = 7.7 kg 1) E 7 bis E 16 UNF = 3.0 kg

1) + 0.6 kg at version with WN 1 F(D), PA ... PD

E 7 A 1(2), E 8 A 1(2) = 2.5 kg

£ 1(E 4) PSL(V) 56 = 7.7 kg 1) E 7 bis E 16 UNF = 3.0 kg

Connection block PSL, PSV or PSM see sect 3.1

Spool valve of block design, up to 10 spool valves, all-steel

Tapped holes: M10; see dimensions sect. 5++

Intermediate ZPL 5 S/H = 5.0 kg Ancillary / (UNF) 5 = 1.5 kg
ZPL 5 V/E = 5.0 kg blocks: / (UNF) 5 AS., BS., = 2.4 kg
ZPL 5 P6 R6 = 5.9 kg / (UNF) 5 AN., BN., = 2.3 kg
ZPL 53 = 2.6 kg /5 AL.../5 BL... = 3.4 kg
ZPL 52 = 2.6 kg /5 VV(VX XV) = 2.4 kg
ZPL 55/9 = 0.7 kg / (UNF) 5 DRH = 2.3 kg
ZPL 50 T... = 2.6 kg /DFA, DBF = 2.4 kg

Pressure fluid
Hydraulic fluid acc. to DIN 51524 table 1 To 3; ISO VG 10 to 68 acc. to DIN 51519

Viscosity range: min. approx. 4; max. approx. 1500 mm²/s

Optimal operation range: approx. 10...500 mm²/s

Also suitable are biologically degradable pressure fluids of the type HEPG (Polyalkylene Glycol) and HEES (synth. Ester) at operation temperatures up to approx. +70°C. HETG (e.g. rape seed oil) or water based fluids e.g. HFA or HFC must not be used!

Temperature
Ambient: approx. -40 ... +80°C; Oil: -25 ... +80°C, pay attention to the viscosity range!

Start temperature down to -40°C are allowable (Pay attention to the viscosity range during start!), as long as the operation temperature during consequent running is at least 20K higher. Biological degradable pressure fluids: Pay attention to manufacturer’s information. With regard to the compatibility with sealing materials do not exceed +70°C.

Observe restrictions for versions with ex-proof solenoid!

Required cleanliness
ISO 4406 20/18/15

Operating pressure
Pmax = 400 bar; ports P, P1, A, B, LS, M, Y

The max. pressure achievable at the consumer side of the spool valves is lowered by the amount equivalent internal control pressure drop at the 3-way flow regulator of the PSL (see curves “Connection block PSL” on next page) or at the pump flow regulator (PSV). Return port R(R1) ≤ 50 bar; port T pressureless with separate pipe (e.g. 6x1) to the tank. It is recommended to employ end plate E 1, E 2, E 3, etc. with an additional leakage port, in case higher return pressure is anticipated. Port Z approx. 20 bar (acc. to coding, see table 7) (outlet); ≤ 40 bar (inlet)

Control circuit
For control pressure, see Q-I-characteristics.

The internal control oil circuit is sufficiently protected against malfunctions caused by contamination by means of a disk filter.

Perm. flow
Max. consumer flow 16...160 (240) lpm or acc. to table 15 sect. 3.2.1.
4.2 Curves

Pressure limiting valve

Connection block

![Graph showing pressure setting vs. flow Q (lpm)]

Secondary pressure limiting valves
(Coding A, B; C acc. to table 16 in sect. 3.2.1)

![Graph showing pressure setting vs. flow Q (lpm)]

Directional spool valve section
2-way inflow controller

![Graph showing back pressure vs. flow Q (lpm)]

Input / consumer flow curve
(Guideline, example directional spool valve with inflow controller type SL 5-52../..)

![Graph showing consumer flow QA (lpm) vs. flow Q (lpm)]

Oil viscosity during measurement approx. 60 mm²/s
4.3 Actuations

For other data, such as codings, symbols etc., see sect. 3.2

<table>
<thead>
<tr>
<th>Actuation</th>
<th>Actuating moment (Nm)</th>
<th>Idle position</th>
<th>End position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version A</td>
<td>approx. 3.0</td>
<td></td>
<td>approx. 7.5</td>
</tr>
<tr>
<td>Version HA, HEA, PA</td>
<td>approx. 5.0</td>
<td></td>
<td>approx. 16.5</td>
</tr>
<tr>
<td>Version EA, EA0</td>
<td>approx. 3.0</td>
<td></td>
<td>approx. 12.0</td>
</tr>
</tbody>
</table>

Actuation C

Version with detent, fixation of the valve spools at any desired position (idle position with special notch)
Version with detent, fixation of the valve spool at idle and both end positions
Pulse duration for the switching process approx. 1 sec.

Actuation E, EA, HE(A)

Proportional solenoid, manufactured and tested acc. to DIN VDE 0580
Twin solenoid with armature chambers sealed to the outside and internally connected to the return duct. Thereby the armature is maintenance-free lubricated and protected against corrosion by the hydraulic fluid.

Additional notes:
See also Sk 7814, as well as for additional components sect. 6.1 !

Specifications apply to all solenoid versions if not stated otherwise.

<table>
<thead>
<tr>
<th>Rated voltage UN</th>
<th>24 V DC</th>
<th>12 V DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coil resistance cold R20</td>
<td>26.6 Ω</td>
<td>6.3 Ω</td>
</tr>
<tr>
<td>Lim. current Ig (lim)</td>
<td>0.63 A</td>
<td>1.26 A</td>
</tr>
<tr>
<td>Cut-off energy Wa</td>
<td>≤ 0.3 Ws</td>
<td>≤ 0.3 Ws</td>
</tr>
<tr>
<td>Rel. duty cycle</td>
<td>S 1</td>
<td>S 1</td>
</tr>
<tr>
<td>(reference temp. θ11 = 50°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required dither frequency</td>
<td>40...70 Hz</td>
<td>(best 55 Hz)</td>
</tr>
</tbody>
</table>

Dither amplitude 1)

\[A_D(\%) = \frac{I_{\text{peak-peak}}}{I_g} \times 100 \]

Electr. connection

Circuitry for coding -G 12
EN 175 301-803 A
3-pin IP 65 (IEC 60529)

Circuitry for coding -G 24
3-pin IP 67 (IEC 60529)

Circuitry for coding -S 12
3-pin IP 67 (IEC 60529)

Circuitry for coding -S 24
4-pin IP 69 K (IEC 60529)

Circuitry for coding -AMP 12 K 4
AMP Junior Timer,
4-pin IP 65 (IEC 60529)

Circuitry for coding -AMP 24 K 4
3-pin IP 67 (IEC 60529)

Circuitry for coding -G 24 H 4
4-pin IP 65 (IEC 60529)

Circuitry for coding -G 24 C 4,
EN 175 301-803 C
4-pin IP 65 (IEC 60529)

Coil a (1) Coil b (2)
Coil a (1) Coil b (2)

3-pin
4-pin

The IP-specification only applies when the plug is mounted as specified.
Actuation suffix E, EA, HE(A)
Explosion-proof version of actuation
Voltage specification G 24 EX, G 24 TEX

Attention:
Additionally observe operating manuals B 01/2002 and B ATEX
Protect against direct sunlight.

Not available in combination with other solenoids at the connection block (table 3a and 8), ancillary blocks (table 19), intermediate plates (table 22), end plates (table 11) and functional cut-off F.. (table 17).

Coil a (1) Coil b (2)

Letter of conformity ATEX
TÜV-A 02 ATEX 0007 X
Ex-proof level © Il 2 G Ex mb II 120°C (T4)
© Il 2 D Ex mbD II T120°C

Duty cycle (ED)
S 1, one coil energized per solenoid housing

Protection class
IP 67 (IEC 60529)

Nom. voltage UN
24 V DC

Coil resistance cold R20
26.6 Ω

Current, cold I20
0.88 A

Lim. current I20
0.63 A

Residual ripple
15% of the supply voltage

Conditions of use:
Ambient temperature
-35 ... +40°C
max. fluid temperature
+70°C
Fuse
If < 1.8 A each solenoid must be safeguarded against overload and short-cut by fuse conforming IEC 60127 medium

Surface coating
Housing galvanically zinc coated
Coil and connection cavity are moulded

Electrical design and testing
conforming EN 60079, VDE 0170/0171 T 1 and T 9

Electrical connection
4 x 0.5 mm²
Cable length
3 m or 10 m (cable ÖLFLEX-440P ® Co. LAPP, D-70565 Stuttgart)

For connection scheme, see “Actuation E, EA” (standard version)
Duty cycle (ED) S 1, one coil energized per solenoid housing
Protection class IP 67 (IEC 60529)
Nom. voltage \(U_{\text{N}} \) 12V DC
Lim. current \(I_{\text{g}} \) 0.4 A
Power, cold \(R_{20} \) 22 \(\Omega \)
Conditions of use:
Ambient temperature -20 ... +40°C
max. fluid temperature +70°C
Surface coating Housing galvanically zinc coated

Attention: Take polarity into account!

Actuation suffix E, EA, HE(A)
Explosion-proof version of actuation (fire-damp protected (mining))
Voltage specification G 24 MSHA

Attention: Additionally observe operating manuals B 04/2006 and B ATEX

Not in combination with functional cut-off F(FP) .. (table 17) or all other solenoids mounted on connection blocks (table 3 a and 8), ancillary blocks (table 19), intermediate plates (table 22) and end plates (table 11)

Attention: Take polarity into account!

Actuation suffix E, EA, HE(A)
Explosion-proof version of actuation (fire-damp protected (mining))
Voltage specification G 24 MSHA

Attention: Additionally observe operating manuals B 04/2006 and B ATEX

Not in combination with functional cut-off F(FP) .. (table 17) or all other solenoids mounted on connection blocks (table 3 a and 8), ancillary blocks (table 19), intermediate plates (table 22) and end plates (table 11)

Actuation suffix E, EA, HE(A)
Explosion-proof version of actuation (fire-damp protected (mining))
Voltage specification G 24 M2 FP

Attention: Additionally observe operating manuals B 04/2006 and B ATEX

Not in combination with functional cut-off F(FP) .. (table 17) or all other solenoids mounted on connection blocks (table 3 a and 8), ancillary blocks (table 19), intermediate plates (table 22) and end plates (table 11)

Actuation suffix H, HA, HEA
Control pressure approx. 5 bar (start of stroke) approx. 18 bar (end position), max. perm. pressure 50 bar

The remote control lines to the control port 1 and 2 have to be piped externally.
Supply is via proportional piloting valve e.g. type FB 2/18 etc. or KFB 2/18 (both acc. to D 6600).

Actuation suffix P, PA
Control pressure approx. 2.5 bar (start of stroke); approx. 7 bar (full elevation)
Position sensor supervision of the valve spool stroke via a Hall-sensor

\[U_{B} = \text{Supply voltage} \]
\[U_{B\text{max}} = 76\% \]
\[U_{B\text{min}} = 24\% \]
\[\text{Accuracy} \pm 9\%(U_{B}) \]

Circuitry

The DC supply voltage must be stabilized and smoothened.
\textbf{Attention:} Any strong magnetic field will destroy the sensor!

Actuation suffix WA

Electrical connection acc. to coding, see table 10

Actuation suffix WA-EX

Letter of conformity ATEX

Coding

\[\text{II 2 G Ex d IIB T4} \]
\[\text{II 2 D Ex td A21 IP 6x T 135°C} \]
\[\text{I M2 Ex d I} \]

Ambient temperature

-30 \ldots +40°C

Cable length

3 m or 10 m

(cable OLFLEX-440 ® with shielding and YE/GN ground (protective conductor) Co. LAPP, D-70565 Stuttgart)

\textbf{Attention:} Operating manual B ATEX and B 10/2008 have to be additionally observed!

Actuation suffix WA-M2 FP

Letter of conformity ATEX

IBEx U09 ATEX 1001X

Letter of Conformity ANZEx

ANZEx 11.3007 X

Electrical connection

4 x 0.75mm², shielded cable

For add. specifications

see coding G 24 MSHA

Ex-proof level

see WA-EX

Ambient temperature

-30 \ldots +40°C

Cable length

3 m or 10 m

Comparitor

(Stroke monitoring / side indication)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OUT_A</td>
<td>PNP-transistor (switched on high-side)</td>
</tr>
<tr>
<td>2</td>
<td>OUT_B</td>
<td>PNP-transistor (switched on high-side)</td>
</tr>
<tr>
<td>3</td>
<td>+U_B</td>
<td>10 ... 32 V DC</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>0 V DC</td>
</tr>
</tbody>
</table>

Residual ripple \leq 10%

Actuation suffix U

Electrical connection acc. to coding, see table 10

Signal table

<table>
<thead>
<tr>
<th>Ident. No.</th>
<th>Spool movement</th>
<th>OUT_A</th>
<th>OUT_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Idle position middle</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>2</td>
<td>P \rightarrow B</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>3</td>
<td>P \rightarrow A</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>
4.4 Functional cut-off, prop. pressure limitation

Functional cut-off: On/Off solenoid with manual emergency actuation

- Rated voltage U_N:
 - 24 V DC
 - 12 V DC

- Coil resistance R_{20}:
 - 34.8 Ω
 - 8.7 Ω

- Current, cold I_{20}:
 - 0.69 A
 - 1.38 A

- Rated current I_{70}:
 - 0.48 A
 - 0.97 A

- Cut-off energy W_A:
 - ≤ 0.3 Ws

- Rel. duty cycle S_1:
 - (reference temp. $\theta_{11} = 50^\circ$C)

- Electr. connection: DIN EN 175 301-803 A
- Protection class (assembled): IP 65 (IEC 60529)

- Circuitry:
 - Coil b
 - Coil a

1) Note: The duty cycle refers to one coil only of each twin solenoid. The perm. duty cycle is only 50%, when both coils are energized simultaneously.

4.5 Other solenoid valves

Electrical data

- Additional documentation: D 7490/1, D 7490/1 E (type EM)
- Connection blocks coding Z, ZM, V
- Ancillary blocks coding /S R VV

<table>
<thead>
<tr>
<th>Nom. voltage U_N</th>
<th>24 V DC</th>
<th>12 V DC</th>
<th>24 V DC</th>
<th>12 V DC</th>
<th>24 V DC</th>
<th>12 V DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom. power P_N</td>
<td>21 W</td>
<td>21 W</td>
<td>24.4 W</td>
<td>24.4 W</td>
<td>21 W</td>
<td>21 W</td>
</tr>
<tr>
<td>Nom. current I_N</td>
<td>0.63 A</td>
<td>1.2 A</td>
<td>1 A</td>
<td>2 A</td>
<td>0.63 A</td>
<td>1.26 A</td>
</tr>
</tbody>
</table>

- Additional documentation: D 7490/1 (type EM 4)
- Connection blocks coding F, D
- Add-on intermediate plates coding ZPL 5 V(S)/E
- End plates coding E 3, E 6

Electrical connection

- Circuitry for coding -G 12, -G 24
- EN 175 301-803 A
- 3-pin
- IP 65 (IEC 60529)
- Plug Co. SCHLEMMER type SL-10
- IP 67 (IEC 60529)

- Additional documentation: D 7490/1 (type EM 4)
- Connection blocks coding PA, PB, PD
- End plates coding E 3, E 6
5. Unit dimensions

All dimensions are in mm and are subject to change without notice!

5.1 Connection blocks and end plates

Type PSV 5, (F, D)-5
PSV 6, (F, D)-5

Directional spool valve sections, see sect. 5.3 ++

Directional seated valve WN 1 F(D)
e.g. PSV 51 F-5

Intermediate plate ZPL 55/9
For missing dimensions of the end plates, see sect. 5.2

Ports

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>R</th>
<th>LS, Z, M</th>
<th>ISO 228/1</th>
<th>SAE J 514</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSV 5</td>
<td>G 1</td>
<td>G 1</td>
<td>G 1/4</td>
<td>(BSPP)</td>
<td>(SAE-20)</td>
</tr>
<tr>
<td>PSV 6</td>
<td>G 1 1/4</td>
<td>G 1 1/4</td>
<td>G 1/4</td>
<td>(BSPP)</td>
<td>(SAE-4)</td>
</tr>
<tr>
<td>PSV UNF 6</td>
<td>1 5/8-12 UN-2B</td>
<td>7/16-20 UNF-2B</td>
<td>SAE J 514</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Type PSV 5(6) -. -5, PSL 5(6), (F, D)/...-5, PSM 6, (F, D)/...-5

Directional seated valve type WN 1 F(D) e.g. PSL 51 F/350-5

Version with pressure limiting valve, which can be arbitrarily activated (see below).

Without WN 1.. e.g. PSV 61/300-5

Intermediate plate ZPL 55/9

For missing dimensions of the end plates, see sect. 5.2

Pressure limiting valve (a/f 12, a/f 13)

Directional spool valve sections, see sect. 5.3 ++

Type PSV 5 N

Ports ISO 228/1 (BSP)

<table>
<thead>
<tr>
<th>Port</th>
<th>P, R</th>
<th>LS, Z, M, DW</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSV 5</td>
<td>G 1</td>
<td>G 1/4</td>
</tr>
<tr>
<td>PSL 6..</td>
<td>G 1</td>
<td>G 1/4</td>
</tr>
<tr>
<td>PSL UNF 6..</td>
<td>1 5/8-12 UN-2B (SAE-20)</td>
<td>7/16-20 UNF-2B (SAE-4)</td>
</tr>
<tr>
<td>PSM 6..</td>
<td>G 1</td>
<td>G 1/4</td>
</tr>
<tr>
<td>PSM UNF 6..</td>
<td>1 5/8-12 UN-2B (SAE-20)</td>
<td>7/16-20 UNF-2B (SAE-4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSV 5.., PSL 5..</td>
<td>22</td>
<td>75</td>
</tr>
<tr>
<td>PSV 6.., PSL 6.., PSM 6..</td>
<td>26</td>
<td>74</td>
</tr>
<tr>
<td>PSV UNF 6.., PSL UNF 6.., PSM UNF 6..</td>
<td>26</td>
<td>72</td>
</tr>
</tbody>
</table>
Type PSL 5(6) U...(F, D)/..-5
PSL 5(6) UH...(F, D)/..-5

Pressure limiting valve (a/f 12, a/f 13)

Without WN 1.. e.g. e.g. PSL 5 U 1/320-5

View from bottom is like illustrated above!

Type PSL 6 Y...(F, D)/..-5
PSL 6 YH...(F, D)/..-5

Directional seated valve WN 1 F(D)
e.g. PSL 6 UH 1 F

Directional spool valves, see sect. 5.3 ++

Directional spool valves, see sect. 5.3 ++

Ports

<table>
<thead>
<tr>
<th>P, R</th>
<th>LS, Z, M</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSV 5 U../..</td>
<td>G 1</td>
</tr>
<tr>
<td>PSL 6 U../..</td>
<td>G 11/4</td>
</tr>
</tbody>
</table>

For missing dimensions of the end plates, see sect. 5.2

For missing dimensions of the end plates, see sect. 5.2
5.2 End plate

Type E 1, E 2, E 4 and E 5
E 1 UNF and E 4 UNF

Port T is plugged with version E 4, E 4 UNF and E 5!

Port Y is only apparent with E 2 and E 5!
a/f 19 max. torque 60 Nm

Type E 3 and E 6

Directional seated valve type WN 1 H

Port T is plugged with version E 6

For missing specifications see above!

Type E 13 to E 16
E 13 UNF to E 16 UNF

Port T is plugged with version E 15 (UNF) and E 16 (UNF)

Port Y is plugged with version E 13, E 13 UNF, E 15 and E 15 UNF

For missing dimensions see above!

End plate E 7 to E 10
E 7 A 1, E 7 A 2
E 8 A 1, E 8 A 2

Port T is plugged with version E 9 and E 10

M10, 10 deep

For missing specifications see above!

Port Y is plugged with version E 7, E 9 and E 7 A (2)

Ports ISO 228/1 (BSPP)

<table>
<thead>
<tr>
<th>P</th>
<th>R</th>
<th>T</th>
<th>Y</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E1, E3, E4, E6</td>
<td>-</td>
<td>G 1/4</td>
<td>G 1/4</td>
<td>ISO 228/1</td>
</tr>
<tr>
<td>E2, E5</td>
<td>-</td>
<td>G 1/4</td>
<td>G 1/4</td>
<td></td>
</tr>
<tr>
<td>E1 UNF, E4 UNF</td>
<td>-</td>
<td>7/16-20 UNF-2B</td>
<td>G 1/4</td>
<td>SAE J 514</td>
</tr>
<tr>
<td>E7, E7 A, E9</td>
<td>-</td>
<td>G 1 1/4</td>
<td>G 1/4</td>
<td>ISO 228/1</td>
</tr>
<tr>
<td>E8, E8 A, E11</td>
<td>-</td>
<td>G 1 1/4</td>
<td>G 1/4</td>
<td></td>
</tr>
<tr>
<td>E13, E15</td>
<td>G 1</td>
<td>G 1/4</td>
<td>G 1/4</td>
<td>ISO 228/1</td>
</tr>
<tr>
<td>E14, E16</td>
<td>G 1</td>
<td>G 1/4</td>
<td>G 1/4</td>
<td></td>
</tr>
<tr>
<td>E13 UNF, E15 UNF</td>
<td>1 5/8-12 UNF-2B</td>
<td>7/16-20 UNF-2B</td>
<td>G 1/4</td>
<td>SAE J 514</td>
</tr>
<tr>
<td>E14 UNF, E16 UNF</td>
<td>1 5/8-12 UNF-2B</td>
<td>7/16-20 UNF-2B</td>
<td>G 1/4</td>
<td></td>
</tr>
</tbody>
</table>
Type E1(E 4) PSL 56/..
E1(E 4) PSV 56/..

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>R</th>
<th>LS, Z, M, DW</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1 PSL 56</td>
<td>G 1</td>
<td>G 11/4</td>
<td>G 1/4</td>
<td>G 1/4</td>
</tr>
<tr>
<td>E4 PSL 56</td>
<td>G 1</td>
<td>G 11/4</td>
<td>G 1/4</td>
<td>-</td>
</tr>
<tr>
<td>E1 PSV 56</td>
<td>G 1</td>
<td>G 11/4</td>
<td>G 1/4</td>
<td>G 1/4</td>
</tr>
<tr>
<td>E4 PSV 56</td>
<td>G 1</td>
<td>G 11/4</td>
<td>G 1/4</td>
<td>-</td>
</tr>
</tbody>
</table>

Adapter plate type ZPL 53
ZPL 53 RB

![Diagram of Adapter plate type ZPL 53](image1)

Contour of the add-on spool valve size 5

Contour of the add-on spool valve size 3 (acc. to D 7700-3)

Ports T: G 1/4 ISO 228/1 (BSPP)

Adapter plate type ZPL 52

![Diagram of Adapter plate type ZPL 52](image2)

Contour of the add-on spool valve size 2 (acc. to D 7700-2)

M10, 10 deep
5.3 Directional spool valves with manual actuation A, C

- Switching position
- Travel stop for flow limitation at A
- Elevation stop intermediate plate
- Actuation type AR(ER, EAR)
- Travel stop for flow limitation at B
- End plate side
- Connection block side

Subsequent angling of the lever housing and/or exchanging the valve spools is possible, see sect. 6.3.4

Port B is not apparent with coding 58 (table 12, 13)

5.4 Directional spool valves with actuation EA, E0A, E

Actuation type EA, E0A 1)

For travel stop, see manual actuation type A in sect. 5.3

With type E0A - -: Tapped plug (Z 7709 047, complete with O-ring 12.42x1.78 HNBR 90 Sh O-ring 9x1.5 NBR 90 Sh and O-ring 7625 109/1)

1) Lever housing at EA (1) and HA (1) can be angled at 180° in the same manner as described at sect. 6.3.4
Additional solenoid versions

Coding -S 12
-S 24
-S 12 T
-S 24 T

Quarter-turn plug PA 6

Coding -G(X) 12 T
-G(X) 24 T

Manual emergency actuation
Pushbutton coding TH

Coding -AMP 12 K 4
-AMP 24 K 4

Coding -AMP 24 H 4 T

Coding -G 24 EX
-G 24 EX 4

Approx. 35
Approx. 35

Coding -G 24 TEX
-G 24 TEX 4

Approx. 35
Approx. 35

1) Lever housing at EA and HA (FA) can be angled at 180° in the same manner as described at sect. 6.3.4
2) This dimension depends on the manufacturer and may be up to 50 mm acc. to EN 175 301-803 A!
5.5 Lift monitoring

Type WA, U

Intermediate plate only in combination with actuation ER and EAR

Type	a
WA | 36.4
U | 49.5

Type	WA-EX
WA-M2 FP

Coding -G 12 IS
-G 24 MSHA
-G 24 M2 FP

Coding -G 24 TEX 70
5.6 Directional spool valves with actuation H, HA and HEA

1) Lever housing at EA and HA (FH) can be angled at 180° in the same manner as described at sect. 6.3.4

5.7 Directional spool valves with actuation P, PA

For elevation stop, of the manual actuation A, see sect. 5.3

Ports conf. (ISO 228/1) (BSPP)
1, 2 = G 1/8
5.8 Mechanical 2-axis joy-stick
5.9 Spool valves with LS-pressure limitation, functional cut-off and prop. pressure limitation

Type A... Type B... Type A...B... Type C...

Type S

Type X

Ports conf. ISO 228/1 (BSPP):
U, W and X = G 1/8

For missing data (directional spool valves and actuations) see section 5.3 to 5.6!

1) Manual emergency actuation
5.10 Ancillary blocks

Type /5

Add-on spool valve sections acc. to 5.3

Socket head screws
ISO 4762-M10x40-A2-70;
Max. torque 40 Nm

Ports A and B :

/5.. = G 1 (ISO 228/1) (BSPP)
/UNF 5.. = 1 5/16-12 UN-2B (SAE-16, SAE J 514)

Type /5 AS.. BS.. /5 AN.. BN..

Pressure adjustment
A-side with type /..AS.. BS
B-side with type /..AN.. BN

Shut-off valve
type EM 42 V is omitted with /5 VX

max. torque
60 Nm

Ports a and b :

/5.. = G 1/4 (ISO 228/1) (BSPP)
/UNF 5.. = 7/16-20 UNF-2B (SAE-4)

Type /5 AN.. BN..

Pressure adjustment
B-side with type /..AS.. BS
A-side with type /..AN.. BN

Ports A and B :

/5.. = G 1 (ISO 228/1) (BSPP)
/UNF 5.. = 1 5/16-12 UN-2B (SAE-16, SAE J 514)

Type /5 VV(VX, XV) 1)

Pressure adjustment
A-side with type /..AN.. BN
B-side with type /..AS.. BS

Note: Not all lever positions are possible.

Shut-off valve
type EM 42 V is omitted with /5 VX

max. torque
40 Nm

Ports a and b :

/5.. = G 1/4 (ISO 228/1) (BSPP)
/UNF 5.. = 7/16-20 UNF-2B (SAE-4)
Ports A and B

/4.. = G 3/4 (ISO 228/1) (BSPP)
/5.. = G 1 (ISO 228/1) (BSPP)

Socket head screws
ISO 4762-M10x70-A2-70
Max. torque 40 Nm

Note: Not all lever positions are possible.
Continuation section 5.8. ancillary blocks

Type /54 DFA 1)

Socket head screws
ISO 4762-M10x70-A2-70
Max. torque 40 Nm

Type /54 DFB 1)

Ports A and B conf. (ISO 228/1) (BSPP)
/4.. = G 3/4
/5.. = G 1

Type /54 DEA 1)

1) Note: Not all lever positions are possible.

Type /54 DEB 1)
Continuation of sect 5.9
Ancillary blocks Intermediate plates for parallel connection

Type /Z 30

Socket head screws
ISO 4762-M10x70-A2-70
Max. torque 40 Nm

Note: Not all lever positions are possible.

Type /5 DRH 1)
/UNF 5 DRH

Ports A and B:
/.. = G 1 (ISO 228/1) (BSPP)
/.. = 1 5/16-12 UN-2B (SAE-16)

Approx. 77

Type /5 R VV 1)

Port BR
G 1/8 (BSPP) or 7/16-20 UNF-2B

Type /Z ALW

Type /Z BLW
5.11 Add-on intermediate plates type ZPL 5...

Port S is plugged with type ZPL 5 S(V)/E

Ports conf. ISO 228/1 (BSPP):
S = G 1/4

Type ZPL 5 P6 R6
ZPL 5 P6 R6 ER

Type ZPL 50 T

Ports conf. ISO 228/1 (BSPP):
LS 2 = G 1/4
P and R = G 1 1/4
6. Appendix

6.1 Notes for selection and lay-out of

a) The connection block

There are additional damping variations available for the LS-signal duct listed in table 2 (apart from the standard versions acc. to sect. 3.1.1). These are required, if strong (load-) oscillations are externally induced on the control circuit. However, a general rule concerning the use of the one or the other variation can not be given. Both versions may be retrofitted any time.

To coding U (or UH)

The pump idle circulation pressure is reduced by means of an additional by-pass valve, if all directional spool valves are in idle position (see also curves in sect. 4.2). The valve opens automatically if the occurring load pressure (LS pressure) drops below 25% of the (still remaining) pump pressure.

Attention: A minimum pump delivery flow of approx. 150 lpm must be maintained for electro-hydraulic actuation with internal control oil supply. The control pressure (pump circulation pressure) is not sufficient for elevating the spool at lower delivery flows.

To coding Y and YH

Additional, pressure resistant port F for the excess oil from the 3-way flow controller. This enables to control separately located consumers by making use of the excess delivery flow not consumed by the prop. directional spool valve bank.

It is important that the pressure induced via port F is minimum 15 bar lower than the load pressure applied to the 3-way flow controller of the first valve bank, if a consumer connected to this valve bank is simultaneously operated. Otherwise the LS control system will fail, and the excess flow might be forced via the main pressure limiting valve.

To coding G

This version lacks the sequence valve at the damping element which is apparent at the standard version to enable quick depressurization down to the pre-load pressure during idle position of the valve spool. This results in a stronger damping effect than with the standard version, as all fluid from the spring cavity of the 3-way flow controller must pass the thread type throttle.

Main application is with consumers prone to low-frequent oscillations - drawback is the delayed depressurization down to the pre-load pressure during idle position of the valve spool (pro-longed run-down).

To coding H

When on account of the required consumer velocity at least one spool valve with reference number 5 (raised circulation pressure) is not sufficient for the prop. directional spool valve bank.

It is important that the pressure induced via port F is minimum 15 bar lower than the load pressure applied to the 3-way flow controller of the first valve bank, if a consumer connected to this valve bank is simultaneously operated. Otherwise the LS control system will fail, and the excess flow might be forced via the main pressure limiting valve.

To coding Z, ZM, V and PA, PB, PD (see table 8)

When using these valves for an emergency stop function, it has to be taken into account that there will be a certain min. residual pressure during pushing load while a valve spool is elevated!

b) Spool valve sections

To coding 1 (example SL 5-51 L 120/63...)

On the one hand, there is a higher consumer flow with directional spool valves without an inflow controller (coding 1) in comparison with one having a 2-way flow controller (coding 2, 5), as the flow is then directly dependent on the control pressure of either the connection block’s 3-way flow controller (type PSL approx. 10 bar), or the metering valve of a variable displacement pump (approx. 14 to 20 bar) for type PSV. On the other hand, the load-independence is lost, if several consumers are actuated simultaneously, because the consumer with the highest load pressure rules the pressure level of the LS-signal given to the 3-way flow controller and therefore defines the available flow in the system.

As soon as another valve with higher load pressure is actuated now, the flow for the first consumer can only be regulated by throttling, i.e. if the highest load pressure varies, the spool elevation (= throttling) of the first valve section has to be reset to maintain a constant delivery flow to the consumer. This consumer flow can be calculated approximately by:

\[Q_{A _B} = Q_{nom} \sqrt{\frac{0.2 \cdot \Delta P_{controller}}{\Delta P_{controller} - A_{valve spool}}} \]

To coding 2 (example SL 5-52 0 63/63...)

The standard version of the spool valve section is load compensated and is equipped with an inflow controller (coding 2). Due to the control pressure of the inflow controller (approx. 6 bar), it regulates a constant flow related only to the spool elevation (groove edges at the spool act like a metering orifice), making its delivery independent of other consumers or system pressure:

\[Q = \sqrt{\frac{\Delta P_{controller} - A_{valve spool}}{0.2}} \]

To coding 5 (example SL 5-A 5 H 160/160...)

This version features an increased control pressure enabling higher consumer flows (see also above coding 1 and 2). The pressure of this flow controller (coding 5) is approx. 10 bar resulting in a 1.3 higher flow when compared to the standard version (coding 2).

To coding 7 (example SL 5-A 7 H 160/160)

Like coding 5. To be used only together with variable displacement with connection block type PSV and variable displacement pump / constant pressure system because of the necessary pressure drop.

To coding R 2, R 5 and R 7

Beside its control function the flow controller acts also as a check valve. Thus preventing a possible flow reversal in case of insufficient supply from the pump.

To coding 8, 81, 82 (example SL 5-58 L 120/160...)

To ensure max. flow for all subsequent valve sections, the highest flow rating (.../160) must be selected for the B side (continuation of P).
c) Flow-pattern variations

Flow-pattern symbols J, B, R, O and I, Y, Z, V

Oscillations may occur depending on application during start (e.g. winches) or during normal operation (e.g. crane booms). They can be caused by the natural frequency of the hydraulic motors or external load variations e.g. swinging load. The flow coding (table 15) of the respective spool should correspond to the cylinder ratio as far as possible.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>J, B, R, O</td>
<td>Creation of a back pressure Δp_{AB} of approx. 20 bar at 1/3 spool lift and more.</td>
<td>When combined with over-center valves e.g. for boom controls</td>
</tr>
<tr>
<td>I, Y, Z, V</td>
<td>Creation of a back pressure Δp_{AB} of approx. 100 bar for up to 1/3 spool lift.</td>
<td>Hydraulic motors (because of pressure rise due to area ratio 1:1), e.g. with cabin slewing</td>
</tr>
</tbody>
</table>

Flow pattern symbol W

This 4/2-way directional spool valve is intended for applications where a constant velocity is required e.g. blower or generator drives. The ability of prop. speed control is restricted, but load independency is ensured via the inflow controller (table 13).

Flow pattern symbol G

3-position 3-way-spool for single acting cylinder

Restrictions:
- No LS-Signal while lowering
- Therefore only usable at open center systems (type PSL) and electric actuation with restrictions – idle pump circulation pressure approx. 11 bar
- The lowering function is just a throttle valve function (load dependent lowering speed). The system needs to be protected by a separate flow control valve (to limit the max. speed e.g. with type SB acc. to D 6920).

Available versions:
SL 5 - W 120/120

<table>
<thead>
<tr>
<th>Coding acc.</th>
<th>Q_{max} A, B (lpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>120</td>
</tr>
<tr>
<td>(1)</td>
<td>150</td>
</tr>
<tr>
<td>5</td>
<td>150</td>
</tr>
<tr>
<td>7</td>
<td>175</td>
</tr>
</tbody>
</table>

Flow pattern symbols J, B, R, O

Flow pattern symbols I, Y, Z, V

Flow pattern symbols L, M, F, H

Available versions:
SL 5 - G 160/160

Available versions:
SL 5 - I 25/25
I 120/120
I 140/140
I 160/160
SL 5 - Y 150/150
SL 5 - Z 80/80
SL 5 - V 25/25
V 120/120
V 140/140
d) Variations for special operation conditions or -requirements
Operation at potentially explosive areas
Electro-hydraulic actuation (type E or EA) version G 24 EX..., see sect. 3.1.4 table 10 and sect. 4.3

Maritime ambient climate
The aggressive sea atmosphere requires sufficient corrosion protection of all moving part of the actuations with hand lever.
The actuation shaft in the hand lever housing is therefore made of stainless steel as standard. All other parts are either corrosion inhibiting gas nitrided or made of stainless steel.
Exception: Housing of pneumatic actuation P or PA which is made of anodized light alloy.

Pressure surges in the return line
Minor leakage may appear at the spring domes of actuations when excessive pressure peaks do occur in the return line (during rapid on/off of consumers). This can be prevented by use of enforcement flanges (suffix G acc. to table 21 in sect. 3.2.1).
Note: The perm. pressure in the return line is limited to approx. 50 bar (see sect. 4.1). The functionality of the actuation solenoids could be harmed in case of excessive pressure.

e) Use of variable displacement pumps
Load-sensing controls in alliance with variable displacement pumps, the LS-signal duct for the pump pressure-flow controller (Load-Sensing metering valve) is relieved, to minimize circulation losses during idle position (no consumer flow). This limiting takes place via the proportional spool valves. Without this decompression the pump would have to work during no-lift position with all the remaining flow against the pressure set at the safety valve of the pressure regulator.
As there exist spool valves without this limiting possibility, some brands of pressure-flow controllers have a internal bypass orifice or throttle between LS-signal entrance and decompressed leakage outlet.
In case of the prop. spool valves type PSV this is not necessary and can even cause malfunctions due to lost control oil. The control oil flow is for functional reasons consciously limited (approx. 2 lpm) (slow-motion of the consumer).
Note: Care must therefore be taken, to ensure that a possible bypass orifice in the pressure-flow regulator is plugged!

f) Combination with load-holding valves
It can happen due to exterior variations of load and resonance that the control system starts to oscillate, if three regulation devices, the 3-way flow controller in the pump or the connection block, the 2-way flow controller at the spool valve section plus load holding insert are connected in series. This can be effectively suppressed by systematic use of a bypass orifice and throttle-, check-, pre-load valve combination within the control oil circuit at the load-holding valve type LHDV acc. to D 7770. A similar behavior can be achieved with use of the over-center valves type LHT acc. to D 7918.

g) Combination of more than 10 spool valves
A total of max. 10 spool valves can be linked, via a consecutive connection of the LS-signal duct. It is irrelevant, whether the spool valves are arranged in one or more valve banks. This restriction is caused by the limited oil flow being available (ensuring slow-motion movements). A chaining via external shuttle valves is to be used, if more than 10 spool valves in separated directional spool valve banks are to be coupled via the LS-signal.

h) Mechanical 2-axis joy-stick
Two neighboring valve sections (functions) can be simultaneously actuated via hand lever
Order coding: PSL 51/250 - 5
- 52 L 160/80/K joint
- 52 H 80/63/K actuation
- 52 L 120/63/A-E 1

(It is possible to combine this mechanical 2-axis joy-stick with electro-hydraulic actuation)

i) Indications of actuation HEA
The following notes to the connection of the valve bank have to be observed to ensure a flawless function of the electric and hydraulic actuation.

Combination with hydraulic control devices like type FB and KFB acc. to D 6600 and D 6600-01
These control devices can be directly connected, due to their function and low inner leakage.
Recommended optional components
For electro-hydraulic actuations

1. Plugs MSD 3-309 (standard, is scope of delivery)
 SVS 296107 Plug with LED’s for functional
 Cut-off acc. to sect. 3.2 table 17
 (For more details, see D 7163)

2. Electric amplifier
 EV 22 K2-12(24) acc. to D 7817/1
 One card can control two
directional valves (including board
 holder).

3. Electric amplifier
 EV 1 M2 acc. to D 7831/1
 EV 1 D acc. to D 7831
 A remote control joy-stick with
direction switches is required
 additionally (see detailed informa-
 tion in D 7831/1 sect. 5.2).

4. Logic valve control type PLVC acc. to D 7845 ++
5. Joy-stick type EJ 1, EJ 2 and EJ 3 acc. to D 7844
6. Radio controls are accepted, if they fulfill the requirements of
 SK 7814.
 (Approved brands:
 Co. HBC-ELEKTRONIK in D-74564 Crailsheim;
 Co. HETRONIK Steuer-Systeme in D-84085 Langquaid;
 Co. NBB-Nachrichtentechnik in D-75248 Öllbronn-Dürrn;
 Co. SCANRECO Industrielektronik AB, Box 19144,
 S-5227 Södertälje, Schweden)

Load-holding valves
Load-holding valves type LHT acc. to D 7918 or type LHDV acc.
to D 7770 and note sect. 6.1 f, type LHK acc. to D 7100 only with
„very stiff” systems and directional spool valves without inflow
controller (coding 1 acc. to table 15, sect. 3.2.1)

Other valves
Proportional spool valve type PSL(V) size 2 acc. to D 7700-2
(can be combined via intermediate plate ZPL 32 with size 5)
Proportional spool valve type PSL(V) size 3 acc. to D 7700-3
(can be combined via intermediate plate ZPL 53 with size 5)
Proportional spool valve type PSL(V)F size 3 and 5 acc. to D 7700-F
(manifold mounting spool valves)
Proportional pressure reducing valve type PMZ acc. to D 7625
Hydraulic joy-stick type KFB01 acc. to D 6600-01
6.2 Schaltungsbeispiele

The diagrams show a typical valve bank for cranes with hydraulic control.

Example 1:
Control by PSL; supply of pressurized oil by constant delivery pump

Add-on spool valves
- 5 2 L 120/120 C 200 /A
- 5 2 L 40/63 A 100 F 1/E A
- 5 2 H 120/63 F 3/A
- 5 1 M 40/80 /A-E 1-G 24

Example 2:
Control by PSV; Pressurized oil supply by variable displacement pump without pressure limiting valve, but with solenoid valve for arbitrary idle pump circulation.

Only difference to example 1 is the connection block with similar versions and arrangement of the add-on valves.

Add-on spool valves
- 5 2 L 120/120 C 200 /A
- 5 2 L 40 /63 A 100/E A
- 5 2 H 120/63 F 3/A
- 5 1 M 40 /80/A-E 1-G 24
6.3 Notes regarding assembly, installation and conversion

All installation, set-up, maintenance and repairs must be performed by authorized and trained staff. The use of this product beyond the specified performance limits, use of non-specified fluids and/or use of not genuine spares will cause the expiration of the guarantee.

6.3.1 Mounting

The mounting of the valve bank must be performed in such a way that no stress is induced.

Three screws and elastic washers between valve assembly and frame are recommended for fastening.

6.3.2 Piping

All fittings used must utilize deformable seal materials.

Do not exceed the specified torque!

6.3.3 Notes for converting the connection block

The connection blocks type PSL 5(6)../...-5 and PSL UNF 6../...-5 can be converted any time into a connection block for variable displacement pump systems (correct type then PSV 55 S../...-5 or PSV UNF 6 S). This requires replacing the parts listed below.

Attention: The screw (parts No. 6380 013) Dor carburetor jet M4x0.6 E are secured with liquid screw lock, which must be applied again when replacing these parts.

This conversion cannot be carried out at the type PSL 5(6) U(H) and PSL 6 Y since the integrated valve combination forbids a combination with variable displacement pump systems.

It is necessary to replace the tapped plug by the dampening screw S (7778 301), while converting a type PSV to type PSL (does not apply to type PSV 5(6) S../...-5 and PSV UNF 6 S../...-5; as these are already equipped with it).

Type PSL 5(6)../...-5

Type PSV 5(6) S../...-5

The screw (parts No. 6380 013)

Carburetor jet M4x0.6

Dampening screw (parts No. 7778 301)

Tapped plugs G 1/8 A NBR

Tapped edge filter
6.3.4 Notes on changing the spool

The valve spools are not mated to one spool housing. Therefore valve spools can be changed at any time to adapt to changing consumer consumption. The following routine is to be followed particularly:

Advice on changing the valve spool
1. Slacken screws (ISO 4762-M6x8-8.8-A2K), remove spring cover.
2. Remove screw (M8x40, machined flat head screw, drawing DIN 7991).
3. Remove spring assembly including spring cap.
5. Lift lever housing including spool out of spool housing, drawing.
6. Remove circlip DIN 6799-3,2 and remove bolt.
7. Assemble with (new) spool in reverse sequence.

Note: The control grooves of the valve spool should always be installed towards the end plate! Exception: Valve spools with flow coding 160 do not show control grooves.

Indications for angling the lever housing by 180° (inversion of the shifting mode)
As set out in 1. - 7. above, however instead of a new valve spool the existing one has to be disconnected, angled at 180° and remounted (see above mentioned note). The intermediate plate together with the lever housing, have to be angled at 180°. All lever housings of the valve bank have to be rotated.

6.3.5 Seal kits
Connection block DS 7700-51
Valve section DS 7700-52
In addition for pneumatic actuation DS 7700-53
Intermediate plate ZPL 53 DS 7700-32
Intermediate plate ZPL 52 DS 7700-22