Directly mounted CAN controls

Product documentation

Proportional directional spool valve type PSL and PSV
(series connection)
Proportional directional spool valve type PSLF and PSVF
(manifold mounting)
Contents

1. **Overview of directly mounted CAN controls for proportional directional spool valves**................................. 4

2. **Available versions, main data**... 5
 2.1 Order coding, structure... 5
 2.1.1 Combination options.. 6

3. **Parameters**... 7
 3.1 General parameters... 7
 3.2 Electrical parameters.. 7
 3.3 Communication.. 7
 3.4 Acceptance tests and environmental tests... 8
 3.5 Electrical connection.. 8

4. **Dimensions**.. 9
 4.1 Actuation add-on... 9
 4.2 Structure of valve bank (series connection) – example.. 11
 4.3 Structure of valve bank (manifold mounting) – example.. 12

5. **Assembly, operation and maintenance recommendations**... 13
 5.1 Intended use... 13
 5.2 Operating instructions... 14
 5.3 Maintenance information... 15
 5.4 Safety instructions... 15
 5.5 Assembly and installation instructions.. 16
 5.6 CAN bus control unit.. 17
 5.7 Structure of the CAN actuation head... 19
 5.8 CAN starter set.. 19
Overview of directly mounted CAN controls for proportional directional spool valves

Proportional directional spool valve banks are used to control the direction of movement and the infinite adjustment of the movement speed of the hydraulic consumers independent of the load. This allows multiple consumers to be run at the same time and independently of each other at different speeds and pressures, as long as the sum of the partial flow rates required for this is covered by the total delivery flow on the pump side. The electrical connection between the valve sections is via internal cable connections (power supply and CAN bus).

Features and benefits:
- Simple wiring
- Hysteresis minimisation through closed-loop slider position control
- High repeat accuracy due to linearised characteristics
- Reduced commissioning time thanks to customised settings and factory calibration
- Very fast reaction behaviour
- Good diagnostic options

Intended applications:
- Mobile cranes
- Mobile hydraulic steering systems
- Construction machines
- Mobile lifting equipment
- Forestry vehicles
- Municipal trucks

Versions:
- Actuation option for series connection size 2, 3 and 5
- Actuation option for manifold mounting size 3, 5 and 7
- Slider position regulation
- Slider position control
Available versions, main data

2.1 Order coding, structure

Order coding example:

PSV 31/D 170-2 -A 2 J 25/25 /EA /EA CAN-C CANL CAN-E /2 /2 -E 4 -AMP

<table>
<thead>
<tr>
<th>Connector</th>
<th>Table 3 Connectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN actuation add-on</td>
<td>Table 2 CAN actuation add-on</td>
</tr>
</tbody>
</table>

| Electrical actuation | Table 1 Electrical actuation |

The type codings in bold are described in this document. For all other details, please see D 7700-2, D 7700-3, D 7700-5, D 7700-F and D 7700-7F

Table 1 Electrical actuation

<table>
<thead>
<tr>
<th>Marking</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EI</td>
<td>Electro-hydraulic</td>
</tr>
<tr>
<td>EA</td>
<td>Combined with manual operation</td>
</tr>
</tbody>
</table>

Table 2 CAN actuation add-on

At least one connector (marking CAN-C or CAN-T) required on the first or last valve section. When using a connector on the valve battery, an end plate (CAN-E) is required on the opposite valve section.

<table>
<thead>
<tr>
<th>Marking</th>
<th>Description</th>
</tr>
</thead>
</table>
| CAN | CAN actuation head with integrated displacement transducer slider position regulation
Hysteresis minimised and linearised characteristic |
| CANL | CAN Lite actuation head without integrated displacement transducer slider position control
Calibrated start and end point of the slider |
| CAN-C | CAN actuation head with connection base
(on the first and/or last valve section) |
| CANL-C | CAN actuation head with connection base and integrated terminal resistor 120 Ω
(on the first and/or last valve section) |
| CAN-E | CAN actuation head with end plate |
| CANL-E | CAN actuation head with connection bases on the left and right-hand side
(only possible with individual CAN actuation head) |
| CAN-CC | CAN actuation head with connection bases on the left and right-hand side
(only possible with individual CAN actuation head) |
| CANL-CC | CAN actuation head with connection bases and integrated terminal resistors on the left and right-hand side
(only possible with individual CAN actuation head) |

For valve batteries with just one valve section with directly mounted CAN controls and a connector, the position of the connector must be defined.

L = left, connector direction connection block
R = right, connector direction end plate
Table 3 Connectors

<table>
<thead>
<tr>
<th>Marking</th>
<th>Description</th>
<th>Appropriate connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMP</td>
<td>4-pin connector, with protective circuit</td>
<td>TE 282192-1</td>
</tr>
<tr>
<td>AMS</td>
<td>4-pin connector, with protective circuit</td>
<td>TE 1-967059-1</td>
</tr>
<tr>
<td>DT</td>
<td>4-pin connector, with protective circuit</td>
<td>TE DEUTSCH DT06-4S</td>
</tr>
</tbody>
</table>

For examples of combination options for different connection bases, see Chapter 2.1.1, "Combination options".

2.1.1 Combination options

Combination options (examples)

<table>
<thead>
<tr>
<th>Description</th>
<th>Description</th>
<th>View</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN-C - CAN - ... - CAN-E / CAN-L /</td>
<td>Connection base on first valve section</td>
<td></td>
</tr>
<tr>
<td>CAN-T - CAN - ... - CAN-E / CAN-L /</td>
<td>Connection base with terminal resistor on first valve section</td>
<td></td>
</tr>
<tr>
<td>CAN-E - CAN - ... - CAN-C / CAN-L /</td>
<td>Connection base on last valve section</td>
<td></td>
</tr>
<tr>
<td>CAN-C - CAN - ... - CAN-C / CAN-L /</td>
<td>Connection base on first and last valve section</td>
<td></td>
</tr>
</tbody>
</table>
3 Parameters

3.1 General parameters

General information

<table>
<thead>
<tr>
<th>Material</th>
<th>Actuation add-on CAN: nickel-plated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation position</td>
<td>As desired</td>
</tr>
<tr>
<td>Connection</td>
<td>According to type coding, see D 7700-2, D 7700-3, D 7700-5, D 7700-F, D 7700-7F</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>Approx. -40 to +80°C</td>
</tr>
<tr>
<td>Weight</td>
<td>Actuation add-on EICAN</td>
</tr>
<tr>
<td></td>
<td>+ 0.3 kg</td>
</tr>
</tbody>
</table>

3.2 Electrical parameters

Operating voltage U_B	10 to 30 V DC
Max. operating current	10 A (CAN connection base)
Current consumption I_V	Max. 800 mA at $U_B = 24$ V DC (per valve section)
	Max. 1.5 A at $U_B = 12$ V DC (per valve section)

3.3 Communication

CAN protocol	CANopen, J1939
CAN bit rate	50, 100, 125, 250, 500, 1,000 kbit/s
CAN-ID	1 ... 127

NOTE

For further information see [D 7700 CAN Manual](#)
3.4 Acceptance tests and environmental tests

EMC
- E1-ECE regulation no. 10 revision 3 - 11 July 2008

Protection class IP 67
- DIN 40050-9

Shocks
- EN 60068-2-29

Vibrations
- DIN EN 60068-2-6

Temperature change
- DIN EN 60068-2-14

Coldness
- DIN EN 60068-2-1

Damp heat
- DIN EN 60068-2-30

Dry heat
- DIN EN 60068-2-2

3.5 Electrical connection

<table>
<thead>
<tr>
<th>Marking</th>
<th>Description</th>
<th>Terminal assignment</th>
</tr>
</thead>
</table>
| AMP | 4-pin Connector with protective circuit | 1: Power +
2: CAN-L
3: CAN-H
4: Power - /GND |
| AMS | 4-pin Connector with protective circuit | 1: CAN-L
2: Power +
3: Power - /GND
4: CAN-H |
| DT | 4-pin Connector with protective circuit | 1: CAN-H
2: CAN-L
3: Power +
4: Power - /GND |
4 Dimensions

All dimensions in mm, subject to change.

4.1 Actuation add-on

Actuation add-on CAN-C, CAN-T and CAN

Size 2
(series connection)

Size 3
(series connection)

Size 5
(series connection)
4.2 Structure of valve bank (series connection) – example

<table>
<thead>
<tr>
<th>Marking</th>
<th>B</th>
<th>B1</th>
<th>H</th>
<th>H1</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSL/PSV size 2</td>
<td>49.5</td>
<td>39.5</td>
<td>99.5</td>
<td>279</td>
<td>79.5</td>
</tr>
<tr>
<td>PSL/PSV size 3</td>
<td>49.8</td>
<td>49.5</td>
<td>110 to 123</td>
<td>294</td>
<td>80</td>
</tr>
<tr>
<td>PSL/PSV size 5</td>
<td>99.5</td>
<td>62.5</td>
<td>137.5</td>
<td>314.5</td>
<td>100</td>
</tr>
</tbody>
</table>
4.3 Structure of valve bank (manifold mounting) – example

<table>
<thead>
<tr>
<th>Marking</th>
<th>B</th>
<th>B1</th>
<th>H</th>
<th>H1</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSLF/PSVF size 3</td>
<td>70</td>
<td>67</td>
<td>100</td>
<td>276.5</td>
<td>194</td>
</tr>
<tr>
<td>PSLF/PSVF size 5</td>
<td>99</td>
<td>85</td>
<td>150</td>
<td>315</td>
<td>168</td>
</tr>
<tr>
<td>PSLF/PSVF size 7</td>
<td>99</td>
<td>106</td>
<td>185</td>
<td>363</td>
<td>194</td>
</tr>
</tbody>
</table>
5 Assembly, operation and maintenance recommendations

5.1 Intended use

This valve is intended exclusively for hydraulic applications (fluid technology), in accordance with Chapter 1. This valve is not intended for end users.

The user must observe the safety measures and warnings in the documentation B 7700 CAN Manual.

Essential requirements for the product to function correctly and safely:
- Observe all information in this documentation and the documentation B 7700 CAN Manual. This applies in particular to all safety measures and warnings.
- The product must only be assembled and put into operation by qualified personnel.
- The product must only be operated within the specified technical parameters. The technical parameters are described in detail in this documentation.
- The operating and maintenance manual of the components, assemblies and the specific complete system must also always be observed.

If the product can no longer be operated safely:
1. Remove the product from operation and mark it accordingly.
 ✓ It is then not permitted to continue using or operating the product.
5.2 Operating instructions

Note product configuration and pressure / flow rate

The statements and technical parameters in this documentation must be strictly observed. The instructions for the complete technical system must also always be followed.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Read the documentation carefully before usage.</td>
</tr>
<tr>
<td>- The documentation must be accessible to the operating and maintenance staff at all times.</td>
</tr>
<tr>
<td>- Keep documentation up to date after every addition or update.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of injury on overloading components due to incorrect pressure settings!</td>
</tr>
<tr>
<td>Risk of minor injury.</td>
</tr>
<tr>
<td>- Pay attention to the maximum operating pressure of the pump and the valves.</td>
</tr>
<tr>
<td>- Always monitor the pressure gauge when setting and changing the pressure.</td>
</tr>
</tbody>
</table>

Purity and filtering of the hydraulic fluid

Fine contamination can significantly impair the function of the hydraulic component. Contamination can cause irreparable damage.

Examples of fine contamination include:
- Metal chips
- Rubber particles from hoses and seals
- Dirt due to assembly and maintenance
- Mechanical debris
- Chemical ageing of the hydraulic fluid

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh hydraulic fluid from the drum does not always have the necessary degree of purity.</td>
</tr>
<tr>
<td>When pouring in hydraulic fluid, filter it.</td>
</tr>
</tbody>
</table>

Pay attention to the cleanliness level of the hydraulic fluid to maintain faultless operation.

Additionally applicable document: D 5488/1 Oil recommendations
5.3 Maintenance information

Conduct a visual inspection at regular intervals, but at least once per year, to check if the hydraulic connections are damaged. If external leakages are found, shut down and repair the system.

Clean the device surface of dust deposits and dirt at regular intervals, but at least once per year.

5.4 Safety instructions

All installation, set-up, maintenance and repairs must be performed by authorised, qualified and trained staff. The use of this product beyond the specified performance limits, operation with non-specified fluids and/or use of non-genuine spare parts will invalidate the warranty.

The general operating manual for the assembly, commissioning and maintenance of oil-hydraulic components and systems must be observed.

Transportation and storage

Analogous to hydraulic components, proper storage and suitable packaging for the product must be ensured. There are no particular requirements resulting from the combination of control electronics and valve.

NOTE
The plastic connector base is mechanically limited in terms of load capacity and is unsuitable for use as a handle!
5.5 Assembly and installation instructions

Mounting

The valve bank must be mounted free from distortion to the machine chassis or frame. It is recommended to mount using three screws and to use elastic spacers between the block and the frame.

Installation

To ensure safe operation of the PSI/PSV CAN valve nodes and to avoid shortening the lifetime of the product through improper operating conditions, the following instructions must be observed:

- The electromagnetic compatibility of the entire system must be ensured by the system manufacturer!
- Avoid installing the valves near machine parts and assemblies that produce lots of heat (e.g. exhaust).
- Radio equipment must be a sufficient distance away.
- An emergency shut-off must be provided for the power supply. The emergency stop switch must be installed on the machine (vehicle) where it is easily accessible by the machine/system operator. The machine (vehicle) manufacturer must ensure that a safe state is produced when the emergency stop switch is actuated.
- One of the mechanisms supported by the device to protect against bus interruptions (node guarding, heartbeat and/or setpoint timeout) must be used.
- The power feed must be dimensioned and fused in accordance with the maximum possible current consumption. A maximum current of approx. 1.5 A at 12 V and 0.8 A at 24 V supply must be set per valve section.
- Earth lines must be dimensioned in accordance with the maximum currents flowing to them. The reference potential for all CAN bus nodes connected to a single line should vary as little as possible from device to device and be identical with the earth connection for the power supply.
- All valve nodes must be unplugged in the event of electric welding work.
- Connectors used to connect the valve battery must be properly secured against water ingress by applying all necessary seals.
- Bus lines suitable for CAN bus networks must be used. Lines should ideally be twisted and screened. The surge impedance must be approx. 120 Ω.
- There must be 120 Ω terminating resistors at both ends of the CAN bus network.
- Valve electronics and the associated magnet block are screwed together and sealed. They must not be separated from each other.
- When replacing the valve spool or the spool block, ensure correct reassembly and sealing.
- Maintain a sufficient distance from sources of magnetic fields, e.g. strong permanent magnets, eddy-current brakes etc. (> 0.5 m).
- If the bus and supply line needs to be removed from individual valve modules during installation or servicing, new cables must be used for reassembly and the sealing elements and end caps must be correctly installed. Cables are available as spare parts.

The following must also be observed during operation:

- The proper operation of the control unit can be ensured only within a temperature range of -40°C to +85°C.
- If the device detects internal overheating, restricted operation (i.e. at reduced power) is possible within a certain temperature range.
- Increased surface temperature and burning on contact can particularly occur at the magnet block.
- The power supply must be within the specified working range. High or constant deviation can damage the electronics.
5.6 CAN bus control unit

General information
The CAN bus (Controller Area Network) is an asynchronous, serial bus system requiring just two wires for data transmission. According to ISO 11898-2 (High-Speed Medium Access Unit), twisted-pair cables with a surge impedance of 108 to 132 Ω are recommended as a bus medium.

Conventional data transmission formats are protocols CANopen 2.0 A & B and J1939, based on 11 Bit or 29 Bit address data.

Design of CAN bus systems
In general, a linear network topology should be aimed for and spur lines should be avoided. If this is not possible, the maximum spur line lengths in accordance with Table 1 apply.

Short bus lines with a low EMC load do not require the CAN line to be screened. For major network expansion or environments with EMC loads, screening of the CAN line with corresponding earthing should be applied.

Twisted bus cables are a compromise solution that are easier to implement in cable harnesses. There must not be a shift in potential between the individual CAN nodes.

Device earths for all CAN node devices must be sufficiently dimensioned and should be brought together at a common neutral point. If a CAN PSI/PSV valve bank is operated in the passage, i.e. it has two contact bases and is looped into the bus line, the maximum current carrying capacity of the contact bases must be observed. It may be possible that bus nodes with a high current consumption may not be supplied via the valve battery, but instead need their own power supply. A max. current of 10 A must not be exceeded.

<table>
<thead>
<tr>
<th>Transfer rate</th>
<th>Bus length</th>
<th>Max. length of spur line</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 kbit/s</td>
<td>600 m</td>
<td>25 m</td>
</tr>
<tr>
<td>125 kbit/s</td>
<td>500 m</td>
<td>20 m</td>
</tr>
<tr>
<td>250 kbit/s</td>
<td>250 m</td>
<td>10 m</td>
</tr>
<tr>
<td>500 kbit/s</td>
<td>100 m</td>
<td>5 m</td>
</tr>
<tr>
<td>1,000 kbit/s</td>
<td>< 20 m</td>
<td>1 m</td>
</tr>
</tbody>
</table>

The power supply and the CAN bus are passed from section to section by means of an internal cable connection. The connection cable contains four wires: power supply (uBat, GND) and CAN bus (CAN high, CAN low). The recommended terminating resistor is not necessary for short spur lines.
Plug-and-Play slave valve nodes with PLVC

A Plug-and-Play configuration can be used for CAN nodes to provide an extended output level with the HAWE control units of type PLVC. Requiring no communication within the user program, these external valve outputs are managed by the PLVC operating system and can be used in a way analogous to existing valve outputs.

Plug-and-Play functionality requires merely the following requirements for the address specification: the external valves controlled via CAN bus must be assigned to CAN node IDs from 32 onwards; all other data traffic and the associated monitoring functions are assumed by the PLVC.

Single valves are addressed with sequential indices from 2000 onwards. The indices of twin valves are calculated based on $2000 + 2 \cdot n$, where n is the number of the section.

<table>
<thead>
<tr>
<th>Section number n</th>
<th>PLVC ID</th>
<th>Node ID</th>
<th>Target COB ID</th>
<th>Actual COB ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2000</td>
<td>32</td>
<td>0x220</td>
<td>0x1A0</td>
</tr>
<tr>
<td>2</td>
<td>2002</td>
<td>34</td>
<td>0x222</td>
<td>0x1A2</td>
</tr>
<tr>
<td>3</td>
<td>2004</td>
<td>36</td>
<td>0x224</td>
<td>0x1A4</td>
</tr>
<tr>
<td>4</td>
<td>2006</td>
<td>38</td>
<td>0x226</td>
<td>0x1A6</td>
</tr>
<tr>
<td>5</td>
<td>2008</td>
<td>40</td>
<td>0x228</td>
<td>0x1A8</td>
</tr>
<tr>
<td>6</td>
<td>2010</td>
<td>42</td>
<td>0x22A</td>
<td>0x1AA</td>
</tr>
<tr>
<td>7</td>
<td>2012</td>
<td>44</td>
<td>0x22C</td>
<td>0x1AC</td>
</tr>
<tr>
<td>8</td>
<td>2014</td>
<td>46</td>
<td>0x22E</td>
<td>0x1AE</td>
</tr>
<tr>
<td>9</td>
<td>2016</td>
<td>48</td>
<td>0x230</td>
<td>0x1B0</td>
</tr>
<tr>
<td>10</td>
<td>2018</td>
<td>50</td>
<td>0x232</td>
<td>0x1B2</td>
</tr>
</tbody>
</table>
5.7 Structure of the CAN actuation head

1. Status LED
2. Data line (CAN-L, CAN-H)
3. Power supply (+/-)
4. Electronics module
5. Actuation unit

5.8 CAN starter set

The CAN starter set enables communication and functionality of CAN valves from a desk, i.e. without a fully functioning complete hydraulic system.

With the CAN starter set, a PC can be used as a partner for the valve (point-to-point connection to the CAN dongle). However, complete bus system simulations containing several bus nodes can also be run.

Scope of delivery
- Electronics module including actuating solenoid
- 4-pin AMP mating connector for adaptation to D-Sub and 4-mm spring connector for power supply
- Data carrier with the HAWE CanNodeTool and drivers

Order coding and item numbers:
- PSX-CAN starter kit: 6962 9725-00
- PEAK CAN USB dongle: 6964 0021-72

A power supply unit for the electric power supply is not included in the scope of delivery. This is required for operation (e.g. 24 V, 1 A).
Further information

Additional versions

- Proportional directional spool valve, type PSL and PSV size 2: D 7700-2
- Proportional directional spool valve, type PSL, PSM and PSV size 3: D 7700-3
- Proportional directional spool valve, type PSL, PSM and PSV size 5: D 7700-5
- Proportional directional spool valve type PSLF, PSVF and SLF: D 7700-F (Size 3 and 5)
- Proportional directional spool valve banks type PSLF and PSVF size 7: D 7700-7F
- Programmable logic valve control type PLVC 8: D 7845 M
- CAN node type CAN-IO: D 7845-IO 14
- Proportional amplifier type EV2S: D 7818/1