
CAN 직접 제어

제품 문서

비례 방향 제어 스풀 밸브 타입 PSL 및 PSV (기본 연결) 비례 방향 제어 스풀 밸브 타입 PSLF 및 PSVF (플레이트 구조)

© by HAWE Hydraulik SE

명시적인 허가를 받지 않은 한 본 문서의 배포 및 복제와 문서 내용의 사용 및 전달을 금합니다.

이를 위반할 시 손해를 보상할 의무가 있습니다.

특허 또는 실용신안 등록 사항의 경우 모든 권리가 보호됩니다.

상호, 제품 브랜드 및 상표는 별도 표시하지 않습니다. 특히 등록되어 보호를 받는 명칭 및 상표의 경우 법규에 따라 사용해야 합니다. HAWE Hydraulik은 어느 경우이든 해당 법규를 인정하고 준수합니다.

인쇄일/문서 생성일: 14.03.2020

목차

1	비례 방향 제어 스풀 밸브용 CAN 직접 제어 개요
2 2.1 2.1.1	공급 가능한 버전, 메인 데이터5타입 코드, 구조5가능한 조합6
3 3.1 3.2 3.3 3.4 3.5	매개변수7일반 변수7전기적 변수7통신7검수 및 환경 검사8전기 연결8
4.1 4.2 4.3	지수9작동 부속품 구성품9밸브 뱅크 구조(라인 구조) - 예11밸브 뱅크 구조(플레이트 구조) - 예12
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	조립-, 작동- 및 정비 지침13올바른 사용 방법13작동 지침14정비 지침15안전 지침15조립 및 설치 지침16CAN 버스 제어17CAN 작동 헤드의 구조19CAN 스타터 세트19

비례 방향 제어 스풀 밸브용 CAN 직접 제어 개요

비례 방향 제어 스풀 밸브 블록은 유압 소비자의 움직임 방향을 제어하고 움직임 속도를 부하와 무관하게 무단계로 제어하는 데 사용됩니다. 이때 여러 유압 소비자를 동시에 각각 독립적으로 상이한 속도와 압력으로 제어할 수 있습니다. 다만이에 필요한 부분 유량의 합이 펌프 측의 전체 유량을 초과하지 말아야 합니다. 여러 밸브 섹션 사이의 전기 연결은 내부 케이블 연결을 통해 이루어집니다(전원 공급 및 CAN 버스).

특성과 장점:

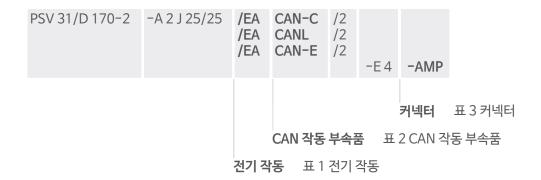
- 간편한 배선
- 클로즈드 루프 슬라이드 밸브 위치 제어를 통한 이력현상 최소화
- 선형 특성곡선을 이용한 높은 반복 정확도
- 고객 맞춤형 사전 설정 및 공장 캘리브레이션을 통해 줄어든 작업 시간
- 매우 빠르게 나타나는 반응현상
- 우수한 진단 옵션

용도:

- 이동식 크레인
- 이동식 유압 스티어링 시스템
- 건설기계
- 이동식 승강장치
- 임업차량
- 청소차량

버전:

- 사이즈 2, 3, 5 기본 연결용 작동 옵션
- 사이즈 3, 5, 7 플레이트 구조용 작동 옵션
- 슬라이드 밸브 위치 제어
- 슬라이드 밸브 위치 컨트롤


직접 부착식 밸브 섹션을 통과하는 밸브 뱅크

공급 가능한 버전, 메인 데이터

2.1 타입 코드, 구조

주문 예:

이 문서에서는 굵게 표시된 타입 명칭에 대해 설명되어 있습니다. 그밖의 모든 데이터는 다음 참조 <u>D 7700-2</u>, <u>D 7700-5</u>, <u>D 7700-7</u>

표 1 전기 작동

식별코드	설명
El	전자 유압식
EA	수동 작동과 결합됨

표 2 CAN 작동 부속품 구성품

첫 번째 또는 마지막 밸브 섹션에 최소 1개의 커넥터(식별코드 CAN-C 또는 CAN-T)가 필요합니다. 밸브 배터리에 커넥터를 사용할 경우 맞은편 밸브 섹션에 엔드 플레이트(CAN-E)가 필요합니다.

식별코드	설명
CAN	변위 센서가 내장된 CAN 작동 헤드 슬라이드 밸브 위치 제어 최소화된 이력현상 및 선형 특성곡선
CANL	변위 센서가 내장되어 있지 않은 CAN Lite 작동 헤드 슬라이드 밸브 위치 제어 슬라이드 밸브의 스타트 포인트와 엔드 포인트가 캘리브레이션됨
CAN-C	연결 소켓이 있는 CAN 작동 헤드
CANL-C	(첫 번째 또는 마지막 밸브 세그먼트)
CAN-T	연결 소켓이 있는 종단저항 120 내장형 CAN 작동 헤드 Ω
CANL-T	(첫 번째 또는 마지막 밸브 세그먼트)
CAN-E CANL-E	엔드 플레이트 포함 CAN 작동 헤드
CAN-CC	좌측 및 우측에 연결 소켓이 있는 CAN 작동 헤드
CANL-CC	(개별 CAN 작동 헤드에서만 가능)
CAN-TT	좌측 및 우측에 연결 소켓이 있고 종단저항이 내장되어 있는 CAN 작동 헤드
CANL-TT	(개별 CAN 작동 헤드에서만 가능)

CAN 직접 제어식 밸브 세그먼트와 플러그가 각각 한 개인 밸브 배터리의 경우 반드시 플러그의 위치를 정의해야 합니다.

L = 왼쪽, 연결 블록 방향 플러그

R = 오른쪽, 엔드 플레이트 방향 플러그

표 3 커넥터

식별코드	설명	적합한 플러그
AMP	4핀 커넥터, 보호 회로 포함	Fa. TE 282192-1
AMS	4핀 커넥터, 보호 회로 포함	Fa. TE 1-967059-1
DT	4핀 커넥터, 보호 회로 포함	Fa. TE DEUTSCH DT06-4S

다양한 연결 소켓의 가능한 조합 예시는 다음 참조 <u>장 2.1.1, "가능한 조합"</u>

2.1.1 가능한 조합

フ	능한	· 조합((예)
	-		` "	,

명칭	설명	도면
CAN-C-CANCAN-E/CAN-L/	연결 소켓, 첫 번째 밸브 섹션	
CAN-T - CAN - ··· - CAN-E / CAN-L /	종단저항 포함 연결 소켓, 첫 번째 밸브 섹션	
CAN-E-CANCAN-C/CAN-L/	마지막 밸브 섹션의 연결 소켓	
CAN-C - CAN - ··· - CAN-C / CAN-L /	첫 번째 및 마지막 밸브 섹션의 연결 소켓	

매개변수

3.1 일반 변수

일반 데이터

재료	작동 부속품 CAN: 니켈 도금
설치 위치	임의로 선택
연결	타입 명칭에 따라 다음 참조 <u>D 7700-2</u> , <u>D 7700-3</u> , <u>D 7700-5</u> , <u>D 7700-F</u> , <u>D 7700-7F</u>
주변 온도	약 -40~+80°C
질량	작동 부속품 구성품 EICAN ■ +0.3 kg

3.2 전기적 변수

작동 전압 U _B	10 30 V DC
최대 작동 전류	10 A (CAN 연결 소켓)
소비전력 I _V	U _B = 24 V DC의 경우 최대 800 mA (밸브 섹션당) U _B = 12 V DC의 경우 최대 1.5 A (밸브 섹션당)

3.3 통신

CAN 프로토콜	CANopen, J1939
CAN 비트 전송률	50, 100, 125, 250, 500, 1,000 kbit/s
CAN-ID	1 127

참고사항

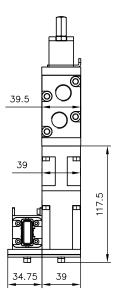
기타 정보는 다음 참조 <u>B 7700 CAN Manual</u>

3.4 검수 및 환경 검사

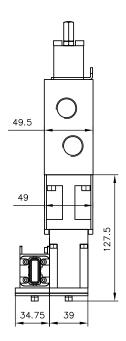
EMC	E1-ECE-Regelung No. 10 Revision 3 - 2008년 7월 11일
보호 등급 IP 67	DIN 40050-9
쇼크	EN 60068-2-29
진동	DIN EN 60068-2-6
온도 변화	DIN EN 60068-2-14
추위	DIN EN 60068-2-1
습한 더위	DIN EN 60068-2-30
건조한 더위	DIN EN 60068-2-2

3.5 전기 연결

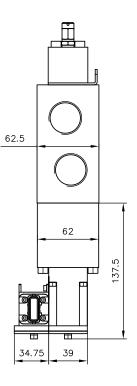
식별코드	설명	핀할당	
AMP	4핀 보호 회로 포함 커넥터	1: Power + 2: CAN-L 3: CAN-H 4: Power - /GND	
AMS	4핀 보호 회로 포함 커넥터	1: CAN-L 2: Power + 3: Power - /GND 4: CAN-H	
DT	4핀 보호 회로 포함 커넥터	1: CAN-H 2: CAN-L 3: Power + 4: Power - /GND	


치수

모든 크기 mm 단위, 변경이 있을 수 있음.

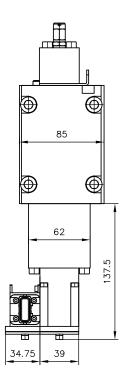

4.1 작동 부속품 구성품

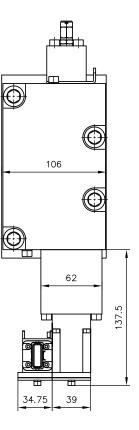
작동 부속품 구성품 CAN-C, CAN-T 및 CAN


사이즈 2 (라인 구조)

사이즈 3 (라인 구조)

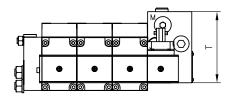
사이즈 5 (라인 구조)

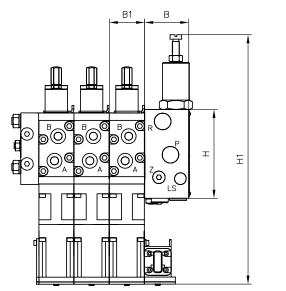


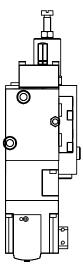

사이즈 3 (플레이트 구조)

49 67 67 34.75 39

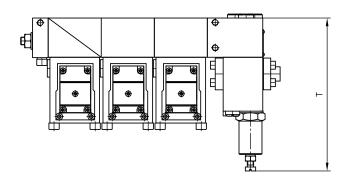
사이즈 5 (플레이트 구조)

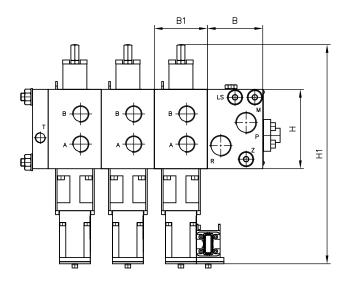


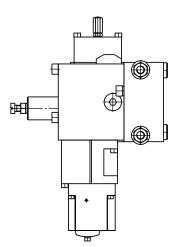

사이즈 7 (플레이트 구조)



4.2 밸브 뱅크 구조(라인 구조) - 예






식별코드	В	B1	Н	H1	Т
PSL/PSV 사이즈 2	49.5	39.5	99.5	279	79.5
PSL/PSV 사이즈 3	49.8	49.5	110~ 123	294	80
PSL/PSV 사이즈 5	99.5	62.5	137.5	314.5	100

4.3 밸브 뱅크 구조(플레이트 구조) - 예

식별코드	В	B1	Н	H1	Т
PSLF/PSVF 사이즈 3	70	67	100	276.5	194
PSLF/PSVF 사이즈 5	99	85	150	315	168
PSLF/PSVF 사이즈 7	99	106	185	363	194

조립-, 작동- 및 정비 지침

5.1 올바른 사용 방법

본 밸브는 오직 유압 애플리케이션용으로만 사용되며, 챕터 1의 규정을 따릅니다(유체 기술).

본 밸브는 최종 사용자용으로 제작되지 않았습니다.

사용자는 본 문서 B 7700 CAN Manual에 기재된 안전조치 및 경고사항을 준수해야 합니다.

제품이 정상적으로 위험 없이 작동하기 위한 필수 전제 조건:

- 본 문서 및 문서 B 7700 CAN Manual에 기재된 모든 정보에 유의하십시오. 이는 특히 모든 안전조치 및 경고사항에 적용됩니다.
- 자격을 갖춘 전문 작업자만이 제품을 조립하고 작동해야 합니다.
- 제품은 제시된 기술 변수 내에서 가동되어야 합니다. 기술 관련 매개 변수는 본 설명서에 충분히 제시되어 있습니다.
- 추가로 부품, 부품 조합 및 특수 전체 설비 사용 설명서를 항상 준수해야 합니다.

제품을 더 이상 위험 없이 작동할 수 없을 경우:

- 1. 제품의 작동을 멈추고 관련 사항을 표시해야 합니다.
- ✓ 이후에는 제품을 계속 사용하거나 작동하는 것이 허용되지 않습니다.

5.2 작동 지침

제품 구성, 압력 및 유량에 유의

본 설명성의 설명 내용 및 기술 매개 변수를 반드시 준수해야 합니다. 추가로 전체 기술 설비의 매뉴얼을 따라야 합니다.

1 참고사항

- 사용 전에 설명서를 주의해서 읽으십시오.
- 작동 및 정비 작업자가 항상 설명서에 접근 가능하도록 하십시오.
- 설명서를 보완이나 업데이트 시 항상 최신 상태로 유지하십시오.

♣ 주의

잘못된 압력 설정으로 인해 부품의 과부하 시 상해 위험! 경미한 부상을 입을 수 있습니다.

- 펌프 및 밸브의 최대 작동 압력에 유의하십시오.
- 압력 설정 및 변경은 압력계 점검을 동시에 실시할 때만 하십시오.

순도 및 작동유 필터링

정밀 구역 내 오염은 유압 컴포넌트의 기능을 심하게 손상시킬 수 있습니다. 오염에 의해 수리 불가능한 손상이 발생할 수 있습니다.

정밀 구역 내 가능한 오염:

- 금속 부스러기
- 호스 및 시일 제질의 고무 입자
- 장착 및 정비에 의함 오염
- 기계식 마모
- 작동유의 화학적 노화

1 참고사항

통에 든 신선한 작동유가 요구 조건에 맞는 순도를 반드시 가지는 것은 아닙니다. 주입 시 작동유를 필터링해야 합니다.

마찰 없는 작동을 위해서는 작동유의 청정도에 유의하십시오.

이와 함께 유효한 문서: D 5488/1 권장 오일

5.3 정비 지침

정기적으로 그래도 최소한 1년에 1회 유압식 포터가 손상되었는지 점검하십시오 (육안 점검), 외부 누출이 발생한 경우, 시스템의 가동 을 중지하고 수리하십시오.

일정한 간격으로, 그래도 최소한 1년에 1회 기기 표면을 청소하십시오 (분진 침적물 및 오염).

5.4 안전 지침

설치, 설정 및 유지 보수는 정교육을 받고 권한을 부여받은 직원만 실시할 수 있습니다. 본 제품을 정해진 공정 한도 이외의 목적으로 사 용하거나, 지정되지 않은 액체를 제품에 투입하거나, 정품 예비 부품을 사용하지 않을 경우에는 제품 보증이 해제됩니다.

유압 부품과 설비의 설치, 가동, 정비에 관한 일반 사용 설명서를 반드시 따르십시오!

운송 및 보관

유압 부품과 마찬가지로 제품의 적절한 보관과 포장에 유의해야 합니다. 제어 전자제품과 밸브의 조합으로 생기는 특별한 요구사항은 없습니다.

1 참고사항

플라스틱 커넥터 소켓은 물리적으로 내구성에 한계가 있으며 손잡이로 사용하기에 부적합합니다!

5.5 조립 및 설치 지침

고정

밸브 뱅크를 기계의 프레임 또는 받침대에 뒤틀림 없이 고정해야 합니다. 나사 3개로 고정하고 블록과 프레임 사이에 탄력 있는 중간 와 셔를 사용할 것을 권장합니다.

설치

PSI/PSV CAN 밸브 노드의 안전한 작동을 보장하고 부적절한 작동 조건 때문에 제품 수명이 단축되는 것을 막기 위해 아래 지침에 유의하십시오.

- 시스템 제조사는 전체 시스템의 전자파 적합성을 확인해야 합니다!
- 열이 대량 발생하는 기계 부품이나 어셈블리(예: 배기장치) 근처에 밸브를 설치하지 마십시오.
- 무선 설비로부터 충분한 거리를 두십시오.
- 전원공급의 비상 차단이 가능해야 합니다. 비상 차단 스위치는 기계 또는 설비 사용자가 쉽게 접근할 수 있도록 기계(차량)에 설치해야 합니다. 기계(차량) 제조사는 비상 차단 스위치 작동 시 안전한 상태에 도달함을 보장할 수 있어야 합니다.
- 버스 단절에 대한 안전메커니즘(Node Guarding, Heartbeat 또는 Setpoint-Timeout) 중에서 장치가 지원하는 메커니즘을 사용해야 합니다.
- 최대 가능 소비전력에 맞게 전원공급의 수준을 정하고 안전을 확보합니다. 밸브 섹션당 12 V 전원공급 시 약 1.5 A, 24 V 시 0.8 A 의 최대 전류를 확보해야 합니다.
- 접지 라인은 그곳에 흐르는 최대 전류에 맞게 수준을 정해야 합니다. 한 배선에 연결된 모든 CAN 버스 장치에 대한 기준 전위는 장치에 따라 되도록 차이가 나지 말아야 하며 라인 전원공급용 접지 연결과 동일해야 합니다.
- 전기 용접 시에는 모든 밸브 노드의 전원을 뽑아야 합니다.
- 밸브 배터리 연결에 사용되는 플러그는 모든 필수 실링을 규정에 맞게 부착해 방수 처리되어야 합니다.
- CAN 버스 네트워크에 적합한 버스 라인을 사용해야 합니다. 라인은 되도록 차폐 꼬임 선을 사용합니다. 파동 임피던스는 약 120 Ω에 달해야 합니다.
- CAN 버스 네트워크 양 끝의 종단저항은 120 Ω이 가능하도록 준비합니다.
- 밸브 전자제품과 관련 솔레노이드 블록은 서로 나사로 연결하고 밀폐합니다. 이것들은 서로 분리되지 말아야 합니다. 스풀 밸브 또는 스풀 밸브 블록 교체 시 다시 올바로 밀폐 조립되도록 유의하십시오.
- 자기장 원천에 대해(예: 와전류 브레이크의 강력한 영구자석 등) 충분한 거리를 유지하십시오(〉0.5 m).
- 설치 또는 서비스 작업 때문에 개별 밸브 모듈의 버스 라인이나 전원공급 라인을 제거해야 할 경우 재조립 시 새 케이블을 사용하고
 종단 캡 같은 밀폐 요소를 제대로 조립하도록 유의합니다. 케이블은 예비 부품으로 구입 가능합니다.

그 밖에도 작동 중 다음 사항에 유의해야 합니다.

- 제어의 정상 작동은 -40°C~+85°C의 온도 범위에서만 보장될 수 있습니다.
- 장치에서 내부 과열이 탐지되면, 특정 온도 범위 안에 제한된 작동만이, 즉 감소된 출력의 작동만이 가능합니다.
- 특히 솔레노이드 블록의 표면 온도가 상승할 수 있으며 접촉 시 화상을 입을 수 있습니다.
- 전원공급은 규정된 작업 범위 안에 있어야 합니다. 커다란 편차 또는 장기 편차는 전자제품에 손상을 입힐 수 있습니다.

5.6 CAN 버스 제어

일반 사항

CAN 버스(Controller Area Network)는 2개의 와이어만으로 데이터 전송이 가능한 비동기식 직렬 버스 시스템입니다. 버스 매질로는 ISO 11898-2 (High-Speed Medium Access Unit)에 따라 파동 임피던스가 108 ~ 132 Ω인 꼬임 쌍선 케이블이 권장됩니다. 통상적인 데이터 전송 형식은 11Bit 또는 29 Bit 주소 데이터에 기반한 프로토콜 CANopen 2.0 A & B 및 J1939입니다.

CAN 버스 시스템 설계

일반적으로 선형 망 접속을 구현하고 스텁 케이블을 피하는 것이 좋습니다. 이것이 불가능한 경우 스텁 케이블의 최대 길이는 표 1에 따릅니다.

EMC 부담이 작고 길이가 짧은 버스 라인의 경우 CAN 라인의 차폐를 포기해도 됩니다. 대규모 네트워크 또는 EMC 부담이 큰 환경에서는 CAN 라인의 차폐 및 그에 상응하는 접지가 이루어져야 합니다.

꼬인 버스 케이블은 케이블 하니스에서 쉽게 구현 가능한 절충적 해결책입니다. CAN 관련 장치들 사이에 전위차가 발생하면 안 됩니다.

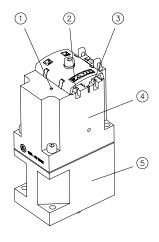
모든 CAN 관련 장치의 접지부는 여유있게 설계되어야 하며, 하나의 동일한 중립점에서 결합되어 있어야 합니다. CAN PSI/PSV 밸브 뱅크가 통로에서 작동할 경우, 즉 뱅크가 2개의 접촉 소켓을 통해 버스 라인으로 연결될 경우 접촉 소켓의 최대 전류 부하에 유의해야 합 니다. 필요시 전력 소비량이 많은 연결된 버스 장치에 대해서는 밸브 배터리를 통해 전원을 공급하는 대신 독자적인 전원공급장치를 마련해야 합니다. 이때 최대 전류 10A를 초과하면 안 됩니다.

전송률	버스 길이	스텁 케이블의 최대 길이
100 kbit/s	600 m	25 m
125 kbit/s	500 m	20 m
250 kbit/s	250 m	10 m
500 kbit/s	100 m	5 m
1000 kbit/s	⟨ 20 m	1 m

전원공급과 CAN 버스는 내부 케이블 연결을 통해 섹션 사이에서 전달됩니다. 연결 케이블에는 다음과 같은 4개 와이어가 포함되어 있습니다. 전원공급(uBat, GND) 및 CAN 버스(CAN High, CAN low). 스텁 케이블이 짧은 경우 권장 종단저항을 지키지 않아도 됩니다.

PLVC에서 플러그 앤 플레이 슬레이브로 기능하는 밸브 노드

CAN 노드용 플러그 앤 플레이 구성을 PLVC 타입 HAWE 컨트롤 유닛의 확장된 출력면으로 사용할 수 있습니다. 이 외부 밸브 출력은 응용프로그램의 통신 없이도 PLVC 운영체제에서 관리될 수 있으며 기존 밸브 출력과 유사하게 사용될 수 있습니다.


플러그 앤 플레이 기능을 위해서는 주소 할당에 대한 다음 요건만 충족하면 됩니다. CAN 버스를 통해 트리거링되는 외부 밸브는 CAN Node-ID에 32부터 지정할 수 있습니다. 그 밖의 모든 데이터 트래픽 및 관련 감시 기능은 PLVC에서 실행됩니다.

싱글 밸브는 2000부터 순차적으로 이어지는 인덱스를 통해 트리거링됩니다. 트윈 밸브의 인덱스는 2000 + 2 · n으로 계산됩니다. 이 때 n은 섹션 수입니다.

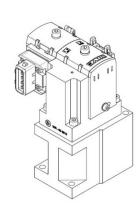
섹션 수 n	PLVC ID	노드 ID	COB ID 목표값	COB ID 실제값
1	2000	32	0x220	0x1A0
2	2002	34	0x222	0x1A2
3	2004	36	0x224	0x1A4
4	2006	38	0x226	0x1A6
5	2008	40	0x228	0x1A8
6	2010	42	0x22A	0x1AA
7	2012	44	0x22C	0x1AC
8	2014	46	0x22E	0x1AE
9	2016	48	0x230	0x1B0
10	2018	50	0x232	0x1B2

5.7 CAN 작동 헤드의 구조

1	상태 LED
2	데이터 케이블(CAN-L, CAN-H)
3	전원공급(+/-)
4	전자제품 모듈
5	잔도 으니

5.8 CAN 스타터 세트

CAN 스타터 세트는 책상에 앉아서, 즉 작동 중인 전체 유압 체계 없이도 CAN 밸브의 통신과 기능을 가능케하는 데 사용됩니다.


CAN 스타터 세트를 통해 PC를 밸브의 상대편으로 사용할 수 있습니다(CAN 동글에 대한 2지점간 접속). 그러나 많은 버스 관련 장치를 포함하는 버스 시스템 전체를 시뮬레이션하는 것도 가능합니다.

공급 사양

- 구동 솔레노이드 포함 전자제품 모듈
- D-Sub 어댑테이션용 4핀 AMP 매칭 플러그 및 전원공급용 4 mm 스프링 커넥터
- HAWE CanNodeTool 및 드라이버 포함 데이터 저장매체

주문 명칭과 재료 번호:

- PSX-CAN Starter-Kit: 6962 9725-00PEAK CAN USB Dongle: 6964 0021-72
- 전원공급 어댑터는 공급 사양에 포함되지 않습니다. 그러나 이것은 작동에 필요합니다(예: 24 V, 1 A).

기타 정보

기타 버전

- 비례 방향 제어 밸브 모델 PSL와 PSV 사이즈 2: D 7700-2
- 비례 방향 제어 밸브 모델 PSL, PSM과 PSV 사이즈 3: D 7700-3
- 비례 방향제어 스풀 밸브, 타입 PSL/PSM/PSV 사이즈 5: D 7700-5
- 비례 방향 제어 밸브 타입 PSLF, PSVF, SLF: D 7700-F (사이즈 3 및 5)
- Proportional directional spool valve banks type PSLF and PSVF size 7: D 7700-7F
- 프로그램 가능 논리 밸브 컨트롤 타입 PLVC 8: D 7845 M
- 밸브 제어장치 타입 CAN-IO: D 7845-IO 14
- 증폭기 모듈 타입 EV2S: D 7818/1